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Transmission Lines and Matching
IMPORTANT: Our discussion assumes that the frequency is so high
that the transmission line is of comparable dimension to the signal
wavelength. Hence, lumped circuit models are invalid.

Basic model
Two waves travelling in opposite directions.

z = distance from the terminating resistance

Key idea:  voltage is varying with z; there are two travelling voltages V+(z) and V–(z)

V+
+

–
V–
+

–

z = 0z = –l

ZL

port 1 port 2
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Suppose the transmission line has an inductance per unit length of L and a
capacitance per unit length of C.

Inductance for dz  = L dz      and    Capacitance for dz  = C dz

Suppose a voltage V and a current I enters from the left end (port 1) and travel
through the transmission line.

At port 1:

At port 2:

v1 =V   and   i1 = I

v2 =V +
∂V (t,z)
∂z

dz

The voltage difference between the two end ports is

v2 − v1 =
∂V (t,z)
∂z

dz = −Ldz ∂I(t,z)
∂t

i2 − i1 =
∂I(t,z)
∂z

dz = −Cdz ∂V (t,z)
∂tSimilarly,

z

z = 0

i1 = I
v1 = V

i2

v2
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Hence, we obtain

∂V (t,z)
∂z

= −L ∂I(t,z)
∂t

∂I(t,z)
∂z

= −C ∂V (t,z)
∂t

∂ 2V (t,z)
∂z2

=
1
v 2
∂ 2V (t,z)
∂t 2

∂ 2I(t,z)
∂z2

=
1
v 2
∂ 2V (t,z)
∂t 2

Differentiating (*) with respect to z and (**) with respect to t, we get 

where v is velocity of the wave given by

The famous
Telegrapher’s equations

(*)

(**)

v =
1
LC
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Solutions of the Telegrapher’s Equations

V (t,z) = F1 t −
z
v

 

 
 

 

 
 + F2 t +

z
v

 

 
 

 

 
 

V (t,z) =
1
Zo

F1 t −
z
v

 

 
 

 

 
 + F2 t +

z
v

 

 
 

 

 
 

 

 
 






The Telegrapher’s equations are actually standard wave equations. The
solution (from physics) is

where F1(.) and F2 (.) are the forward and backward travelling wave functions.

For sine waves, F1 (.) and F2 (.) are exponential functions                   ,
where β = ω/v.

Also, Zo is the characteristic impedance of the transmission line

e j(ωt±βz )

Zo =
L
C

= Lv =
1
Cv
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Transmission Line Equations

Suppose at the load side (i.e., port 2), the travelling voltages are V+(0) and V–(0).
So, the voltage at the load is simply the sum of V+(0) and V–(0).  But the current
should be the difference of I+(0) and I–(0) because they flow in opposite
directions in the transmission line.

VL =V +(0) +V −(0)

IL = I+(0) − I−(0) =
V +(0) −V – (0)

Zo

But the current must be consistent with Ohm’s law at the load. Hence,

IL =
V +(0) −V −(0)

Zo

=
VL

ZL

(#)

(##)

(###)

So, (#) and (###) give V −(0)
V +(0)

=
ZL − Zo

ZL + Zo
defined as reflection coefficient Γ 
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The voltage and current at any position z are

V (z) =V +(0)e− jβz +V −(0)e+ jβz

I(z) =
V +(0)e− jβz −V −(0)e+ jβz

Zo

Thus, at position z, the input impedance is

V+
+

–
V–
+

–

z = 0z = z

ZL

port 1 port 2

Z = Zo
V +(0)e− jβz +V −(0)e+ jβz

V +(0)e− jβz −V −(0)e+ jβz

   = Zo
e− jβz + Γe+ jβz

e− jβz − Γe+ jβz = Zo
1+ Γe2 jβz

1− Γe2 jβz

Z

V+
V–

I+

–I–

V

I

Phasor view

V– and I– are
moving
according to Γ.
Hence, Z is
changing too.
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At the left end of the transmission line (port 1), the input impedance is 

V+
+

–
V–
+

–

z = 0z = –l

ZL

port 1 port 2

Zin = Zo
1+ Γe−2 jβl

1− Γe−2 jβl = Zo
ZL + jZo tanβl
Zo + jZL tanβl

Zin

Impedance for any length l can be found from this equation.

l
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Special Cases

If the load is matched, i.e., ZL = Zo, then
•  Γ = 0
•  Zin = ZL   for all l.

If the transmission line is a quarter wavelength long (l = λ/4), Zin = Zo
2/ZL.

If the transmission line is a half wavelength long (l = λ/2), Zin = ZL.

If the load is open-circuit, i.e., ZL = ∞, then Γ = 1.

If the load is short-circuit, i.e., ZL = 0, then Γ = –1.
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Smith Chart
The general impedance equation is Zin

Zo

=
1+ Γe−2 jβl

1− Γe−2 jβl

In general,  Zin/Zo is a complex number ζ.  So, we may assume that
Zin
Zo

= ζ = r + jx

Also, in general, Γ is a complex number whose magnitude is between 0 and 1.
(E.g.,  0 for matched load, 1 for open-circuit, –1 for short-circuit, etc.)

We may rewrite the equation as

ζ =
1+ Γ(l)
1− Γ(l)

      or     Γ(l) =
ζ −1
ζ +1

=
(r −1) + jx
(r +1) + jx

Γ(l) reflection coeff. at
the distance l from
load
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The Smith Chart as a Calculation Tool

Basically the Smith chart is a polar plot of the reflection coefficient.  Usually we
put the normalized impedance ζ on top of this polar plot.

If we know the impedance at a certain point P along the transmission line, then
the impedance at a distance l from this point can be read off from the Smith chart
by transforming it appropriately according to the reflection coefficient Γ.

So, we may imagine that the magnitude |Γ| is the radius and the argument of Γ is
the rotating angle 2βl.

ζ1ζ2 l

P
ζ1 ζ2

Γ(0)
Γ(0)e–2jβl

2βl = 4πl/λ
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x = 1
x = 0.5

x = 2

x = –0.5
x = –1

x = –2

r = 0
r = 0.5

r = 1
r = 2

Real part r :    circles centered at               , with radius  

Imaginary part x : circles centered at           , with radius  

r
1− r

,0
 

 
 

 

 
 

1
1− r

1, 1
x

 

 
 

 

 
 

1
x

The solution loci of the impedance equation can be mapped to
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Using the Smith Chart

All passive ζ lie inside the chart,
i.e, r > 0.

1 full cycle = half wavelength
 because 2βl = 4πl/λ,

i.e.,  2π is equivalent to λ/2r = 0

• For lossless transmission lines,
|Γ| remains unchanged. Hence,
any impedance point on the
chart simply rotates in
clockwise (generator) direction
as the length increases.

• But for lossy lines, |Γ| also
decreases. Thus, the
impedance point moves closer
to the center as well as rotates,
as the length increases.

• Also, turning it 180o will make
it an admittance chart! Easy!

Usages:
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Example

Suppose an impedance 22.5 + j 37.5
Ω is terminating a transmission line
of Zo = 75 Ω.

The line is 1.64 cm long and the
frequency is 146 MHz.

Suppose the velocity factor is 2/3,
i.e., the wave travels at 2/3 of the
speed of light which is 2x108 m/s or
20 cm/ns.

Thus, λ = v / f = 1.37 m, and the line
length is 0.12λ.

1.64 cmζ

22.5 + j 37.5 Ω
= 0.3 + j 0.5
(normalized for 75Ω
transmission line)

Zo = 75Ω

On the chart, we put 0.3 + j 0.5 first,
and then rotate it through 0.12λ. The
transformed impedance is 1.6 + j 1.7,
i.e., 120 + j 127.5 Ω for a 75Ω line.
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Summary of Important Properties of Transmission Lines

Characteristic impedance, Zo  =  ratio of the voltage to current of the forward travelling
wave, assuming no backward wave.  It is a real but lossless impedance!
Zo  =           ,  where L is inductance per unit length and C is capacitance per unit length.

Wave velocity has two types.  Phase velocity and group velocity. The phase velocity is the
speed of a point of a chosen phase moving along the line. So, phase velocity is how fast a
wave moves. If we find a point where V+ = 0 and track this point, we will see that it moves at
the phase velocity.  Thus, phase velocity is ω/β or fλ. Moreover, group velocity is defined as
dω/dβ, which describes how fast energy travels along the line.  For coax cables and parallel
lines, phase velocity is same as group velocity, and is given by           .

Return loss is defined as –20 log10 |Γ| dB, and it is how much power is reflected. For
instance, a return loss of 3 dB means that half the power is reflected, and a return loss of 20
dB means that 1% of the power is reflected.

Voltage standing wave ratio (VSWR) is the ratio of the maximum voltage amplitude to the
minimum voltage amplitude which is at λ/4 from the maximum point. VSWR is given by

And it measures the extent of mismatch. If 1% of incident power is reflected by load, |Γ|2 =
0.01 and |Γ| = 0.1, then VSWR ≈ 1.2.  Its value is 0 for matched load.

L /C

1/ LC

VSWR =
1+ |Γ |
1− |Γ |
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Matching Condition

Zo

Suppose we have an imaginary joint at P in a very long transmission line.

P

The wave goes through the joint without reflection because there is actually no
joint (just imagined).

R = Zo

Now, let us terminate a resistance of value Zo at the same position of this
imaginary joint. Obviously, the wave will go through without reflection too.

This is called a matched load. So, we cannot tell if anything has happened
because nothing gets reflected.

Zo
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Why do we want to match a transmission line?

1. We can make sure that all power is delivered to the load circuit.

2. The generator (signal source) will not resonate with the line.
Usually, the generator (signal source) is designed to drive a 50Ω
or 75Ω load, which is the characteristic impedance of common
transmission lines. If the load is matched with the line, the
generator will see no reactive part and the length of the line will
not affect anything.

ZLZo
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Simplest Matching Strategy
Basically we want the impedance to match the characteristic impedance of the
transmission line.  In other words, we want at some point on the line, the
normalized impedance  ζ = 1 + j 0.

ζL

ζ = 1 + j 0

?

Look at the Smith chart!  We can always find the circle corresponding to r = 1
which has the desired real part for matching.

So, we can always find a point on the line where
the real part r is 1. Let’s say this point is l from
the load.

Remember, l can be conveniently measured on the
Smith chart (actually marked on the chart as number
of wavelength).

ζL

r = 1

l
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l

ζL

1 + j x

P

So, what remains to be done now is to cancel out the impedance jx by
connecting at point P a reactive impedance having an impedance of –jx.

l

ζL

1 + j 0

P

–jx
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x = 1

x = 0.5

x = 2

x = –0.5

x = –1
x = –2

How to get the –jx ?

A convenient way is to use a short-circuit or open-circuit stub, which is
simply a transmission line terminated by a short- or open-circuit.

The idea is simple. If we look at the Smith chart again, the outer circle
corresponds to r = 0, which means pure reactance or ±jx.

r = 0

open-
circuit load

short-
circuit load

All we need to do is to
find the appropriate
length, starting with
either a short- or open-
circuit load, such that the
required reactance is
obtained. For example, if
we need –j1, we just have
a λ/8 line with open-
circuit load, i.e., a λ/8
open-circuit stud.
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Summary of Single Stub Matching Technique

The above method, using one stub, is a common matching technique. The
general procedure is:

1. Find the point at which r = 1. Cut it there.
2. Find the value of jx at that point.
3. Find the appropriate stub length to cancel out jx and connect the stud in

series at that point.

l

ζL

1 + j 0

P

matching stub
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Obviously, the matching stub can also be connected in shunt (parallel), but the
stub length may be different since we are now adding up admittance!

On the Smith chart, we should get the admittance of the required stub by
rotating the impedance by 180o.

ζL

r = 1

l impedance is jx

admittance is 1/jx = jy

Thus, we can connect in shunt a
stub of –jy to cancel this jy.

l

ζL

1 + j 0



Michael Tse: Transmission Lines 24

Consider a 1-metre dipole antenna load
which is used at a frequency not designed
for. It is cheaper and easier to do a stub
matching rather than to change the antenna
structure. Suppose the frequency is to be
changed from 120 MHz to 160 MHz.

Some initial experimental data of the
normalized impedance at the dipole centre
are plotted on the Smith chart, for 120, 125,
130, …, 160 MHz.

Antenna Matching Example

Matched at around 140 MHz (centre of
chart). The circles represent constant Γ
or VSWR and hence tell us about the
bandwidth of this dipole:

VSWR=1.33 or |Γ| = √0.02 = 0.141 (2% power reflected)
Frequency range is 137 MHz to 144 MHz

VSWR=1.93 or |Γ| = √0.1 = 0.316 (10% power reflected)
Frequency range: 132 MHz to 151 MHz

Blue: VSWR=6 or |Γ| = √0.5 = 0.7071 (50% power reflected)
Too bad! Significantly mismatched.
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Matching Procedure
We begin with the impedance at 120 MHz. It
is 44.8 – j 107 Ω, normalized to 0.597 – j 1.43
for a 75Ω coax line.

Rotate it clockwise (generator
direction) until it reaches the circle
corresponding to r = 1 (red circle).
We see that
1. We need to insert a stub at

0.346λ from the antenna.
2. The normalized reactance

at that point is j 1.86. So,
we need to cancel this out.

Cancellation requires a short- or
open-circuit stub of appropriate
length.
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Finally, to get the match stub length, we use
the Smith chart again.

The outer circle corresponds to r = 0,
i.e., pure reactance.

The leftmost point is SHORT,
and the rightmost is OPEN.

On the chart, we find the
reactance circle of x = –1.86
and find the length required
from either the OPEN or
SHORT point.

Here, we need 0.328λ from the
SHORT, or 0.078λ from the
OPEN. (Remember to go
clockwise!)

We choose the open-circuit stub. The
required length is 0.078λ.
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Final Answer:

0.346λ

0.078λ
dipole
antenna

Suppose the wave velocity in the coax cable is 20 cm/ns (2/3 of light speed).
Then, wavelength is 1.67 m.

So, 0.346λ = 0.5767 m = 57.6 cm   and   0.078λ = 0.13 m = 13 cm.

(57.6 cm)

(13 cm)
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Practical Points:

How long?
Make stub as short as possible for wider bandwidths, preferably less than λ/2. But
if the stub is too short for precise cutting, a bit over λ/2 is acceptable. Remember
that when you add λ/2, you get the same reactance value.

Series or shunt?
Physical construction usually dictates the choice. For balanced feeders like twin
ribbon cables, series insertion is easy to make. But for coax, series is difficult.

Open or short stub?
If there is a choice, choose the one that makes the stub length shortest, preferably
less than λ/4 if possible. For microstrips, open stubs are easier to make. For coax,
short stubs are less radiating from ends.


