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11.3 Derive the transition matrix e /" of weakly coupled lines described by Eq. (11.3.2).
11.4 Verify explicitly that Eq. (11.4.6) is the solution of the coupled-mode equations (11.4.1). 1 2

11.5 Computer Experiment—Fiber Bragg Gratings. Reproduce the results and graphs of Figures
11.5.2 and 11.5.3.

Impedance Matching

12.1 Conjugate and Reflectionless Matching

The Thévenin equivalent circuits depicted in Figs. 10.11.1 and 10.11.3 also allow us to
answer the question of maximum power transfer. Given a generator and a length-d
transmission line, maximum transfer of power from the generator to the load takes
place when the load is conjugate matched to the generator, that is,

(conjugate match) (12.1.1)

The proof of this result is postponed until Sec. 15.4. Writing Zy, = Ry, + jXm and
Z; = Ry +jX|, the condition is equivalent to R; = Ry, and X = —Xy,. In this case, half
of the generated power is delivered to the load and half is dissipated in the generator’s
Thévenin resistance. From the Thévenin circuit shown in Fig. 10.11.1, we find for the
current through the load:
Vin Vin Vin

I = = L =
YT Zw+Zr T (Rm+Rp)+j(Xm + X)) 2R

Thus, the total reactance of the circuit is canceled. It follows then that the power de-
livered by the Thévenin generator and the powers dissipated in the generator’s Thévenin
resistance and the load will be:

1 Vinl?
Puot = L Re(Vi )= Vbl
2 4Rth
1 Val2 1 L, Valr 1 (1212
Pm =Ryl | =—"—=-P Py = Ryl |P=—"=-P
=3 Ll S8R SPot, PL=7 Ll SR 5 Prot

Assuming a lossless line (real-valued Z, and B), the conjugate match condition can
also be written in terms of the reflection coefficients corresponding to Z; and Z:

Iy =TI} =Tked (conjugate match) (12.1.3)

Moving the phase exponential to the left, we note that the conjugate match condition
can be written in terms of the same quantities at the input side of the transmission line:
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[y=Tpe %bd = I = (conjugate match) (12.1.4)

Thus, the conjugate match condition can be phrased in terms of the input quantities
and the equivalent circuit of Fig. 10.9.1. More generally, there is a conjugate match at
every point along the line.

Indeed, the line can be cut at any distance I from the load and its entire left segment
including the generator can be replaced by a Thévenin-equivalent circuit. The conjugate
matching condition is obtained by propagating Eq. (12.1.3) to the left by a distance I, or
equivalently, Eq. (12.1.4) to the right by distance d — I:

Iy =Tpe %Bl = }e2Bd-D (conjugate match) (12.1.5)

Conjugate matching is not the same as reflectionless matching, which refers to match-
ing the load to the line impedance, Z; = Zj, in order to prevent reflections from the
load.

In practice, we must use matching networks at one or both ends of the transmission
line to achieve the desired type of matching. Fig. 12.1.1 shows the two typical situations
that arise.

flat line

—VZO Zo%.

matching
network
matching
network
Sl

conjugate match

> Zy=Z; Zo

matching
network

D
Fig. 12.1.1 Reflectionless and conjugate matching of a transmission line.

In the first, referred to as a flat line, both the generator and the load are matched
so that effectively, Zg = Z; = Zy. There are no reflected waves and the generator
(which is typically designed to operate into Z) transmits maximum power to the load,
as compared to the case when Zg = Zy but Z; # Z,.

In the second case, the load is connected to the line without a matching circuit
and the generator is conjugate-matched to the input impedance of the line, that is,
Zq = Z{. As we mentioned above, the line remains conjugate matched everywhere
along its length, and therefore, the matching network can be inserted at any convenient
point, not necessarily at the line input.

Because the value of Z; depends on Z; and the frequency w (through tan fd), the
conjugate match will work as designed only at a single frequency. On the other hand, if
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the load and generator are purely resistive and are matched individually to the line, the
matching will remain reflectionless over a larger frequency bandwidth.

Conjugate matching is usually accomplished using L-section reactive networks. Re-
flectionless matching is achieved by essentially the same methods as antireflection coat-
ing. In the next few sections, we discuss several methods for reflectionless and conju-
gate matching, such as (a) quarter-wavelength single- and multi-section transformers;
(b) two-section series impedance transformers; (c) single, double, and triple stub tuners;
and (d) L-section lumped-parameter reactive matching networks.

12.2 Multisection Transmission Lines

Multisection transmission lines are used primarily in the construction of broadband
matching terminations. A typical multisection line is shown in Fig. 12.2.1.

o Li—we—Lo—» Ly
H
main line Zg 1-1: Z Z» VAV Zr
P %] P3  Pum Pm+
Z Z5 Z3 Zy Zy41

Fig. 12.2.1 Multi-section transmission line.

It consists of M segments between the main line and the load. The ith segment
is characterized by its characteristic impedance Z;, length [;, and velocity factor, or
equivalently, refractive index n;. The speed in the ith segment is ¢; = ¢¢/n;. The phase
thicknesses are defined by:

6,-=Bil,-=gl,-=2nili, i=1,2,....,.M (12.2.1)
Cj Co

We may define the electrical lengths (playing the same role as the optical lengths of
dielectric slabs) in units of some reference free-space wavelength A or corresponding
frequency fo = co/A¢ as follows:

(electrical lengths) | Li= M Z | i g0 M (12.2.2)
Ao A

where A; = Ag/n; is the wavelength within the ith segment. Typically, the electrical
lengths are quarter-wavelengths, L; = 1/4. It follows that the phase thicknesses can be
expressed in terms of L; as 6; = wn;li/co = 21tfn;li/ (foAg), or,

(phase thicknesses) 0; = Bili = 21TL; ﬁ = 21L; Ao , 1=1,2,...,M (12.2.3)

fo A
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where f is the operating frequency and A = ¢o/f the corresponding free-space wave-
length. The wave impedances, Z;, are continuous across the M + 1 interfaces and are
related by the recursions:

Ziv1 +jZitan §;
Zi+JjZin tan &; ’
and initialized by Zj+1 = Z1. The corresponding reflection responses at the left of each
interface, I't = (Z; — Zi—1)/ (Z; + Z;j—1), are obtained from the recursions:

Zi=1Z; i=M,...,1 (12.2.4)

4+ I —2j6i
= Pitiime = (12.2.5)
1+ pilis1e~%0

and initialized at I'ny+ = I'p = (Zp — Zym) / (Zp + Zp), where p; are the elementary
reflection coefficients at the interfaces:

Zi— Zi

= i =1,2,...,.M+1 12.2.
Zi+ Ziy’ 1=1,2,..., ( 6)

Pi
where Zy 41 = Z;. The MATLAB function multiline calculates the reflection response
I'y (f) at interface-1 as a function of frequency. Its usage is:

Gammal = multiline(Z,L,ZL,);

% reflection response of multisection line

where Z = [Zy,Z1,...,Zm] and L = [Ly,L>,...,Ly] are the main line and segment
impedances and the segment electrical lengths.

The function mu1ti11ine implements Eq. (12.2.6) and is similar tomultidiel, except
here the load impedance Z; is a separate input in order to allow it to be a function of
frequency. We will see examples of its usage below.

12.3 Quarter-Wavelength Chebyshev Transformers

Quarter-wavelength Chebyshev impedance transformers allow the matching of real-
valued load impedances Z; to real-valued line impedances Z, and can be designed to
achieve desired attenuation and bandwidth specifications.

The design method has already been discussed in Sec. 6.8. The results of that sec-
tion translate verbatim to the present case by replacing refractive indices n; by line
admittances Y; = 1/Z;. Typical design specifications are shown in Fig. 6.8.1.

In an M-section transformer, all segments have equal electrical lengths, L; = [;/A; =
nil;/ Ao = 1/4 at some operating wavelength Ao. The phase thicknesses of the segments
are all equal and are given by 6; = 27tLif /[0, or, because L; = 1/4:

_nf
2 fo
The reflection response |I'1 (f) |2 at the left of interface-1 is expressed in terms of

the order-M Chebyshev polynomials Ty (x), where x is related to the phase thickness
by X = Xg cos O:

(12.3.1)

e3 T3 (xg cos )
1+ e2T3; (xocos §)

T ()12 = (12.3.2)
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where e; = eo/ T (Xg) and e is given in terms of the load and main line impedances:

s (Zp—Zp)? |Ip|? Zr — Zy
2 = = =, === 12.3.3
0 4717 1—|FL|Z L 71+ Zy ( )
The parameter X is related to the desired reflectionless bandwidth Af by:
SR - (12.3.4)
X()—Sin(Eg> 3.
4 fo
and T (Xg) is related to the attenuation A in the reflectionless band by:
T3 (xo) +e3
A =10lo s 12.3.5
810 ( 1+e} ( )
Solving for M in terms of A, we have (rounding up to the next integer):
acosh (\/(1 +e3)104/10 — eé)
M = ceil (12.3.6)

acosh(xg)

where A is in dB and is measured from dc, or equivalently, with respect to the reflec-
tion response |I';| of the unmatched line. The maximum equiripple level within the
reflectionless band is given by

r
Pl = IF110420 = A = 20l0gy (2 (12.3.7)
‘Fl |rnax
This condition can also be expressed in terms of the maximum SWR within the
desired bandwidth. Indeed, setting Smax = (1 + [I'ilmax) /(1 = [I'1|max) and Sp =
(14 |I't])/(1—1|IL|), we may rewrite (12.3.7) as follows:

[TLl
A= 2010g10 <ﬁ
max

S.-1 M) (12.3.8)

) = 20logu <SL 1 S — 1

where we must demand Syax < Sp or [I'1|max < [I'L|. The MATLAB functions chebtr,
chebtr2, and chebtr3 implement the design steps. In the present context, they have
usage:

[Y,a,b] = chebtr(Y0,YL,A,DF);
[Y,a,b,A] = chebtr2(Y0,YL,M,DF);
[Y,a,b,DF] = chebtr3(YO0,YL,M,A);

% Chebyshev multisection transformer design

% specify order and bandwidth

% specify order and attenuation

The outputs are the admittances Y = [Yo,Y1,Y>,..., Yy, Y] and the reflection
and transmission polynomials a, b. In chebtr2 and chebtr3, the order M is given. The
designed segment impedances Z;, 1 = 1,2,..., M satisfy the symmetry properties:

ZiZmir-i= 2071, i=1,2,....M (12.3.9)
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Fig. 12.3.1 One, two, and three-section quarter-wavelength transformers.

Fig. 12.3.1 depicts the three cases of M = 1,2,3 segments. The case M = 1 is
used widely and we discuss it in more detail. According to Eq. (12.3.9), the segment

impedance satisfies Zf = ZyZ1, Or,
71 =+|ZoZ; (12.3.10)

This implies that the reflection coefficients at interfaces 1 and 2 are equal:

Z1—-Zy Z1 -7
= = = 12.3.11
Zi+ 20 Zi+z P? ( )
Because the Chebyshev polynomial of order-1 is T (x) = X, the reflection response
(12.3.2) takes the form:

P

2 2
. e;cos o
Ty (f)|2 = He%m (12.3.12)

Using Eq. (12.3.11), we can easily verify that e is related to p; by
4p}
(1-p7)2
Then, Eq. (12.3.12) can be cast in the following equivalent form, which is recognized

as the propagation of the load reflection response I'> = p» = p; by a phase thickness &
to interface-1:

e3 =

2
, pr(1+z1)
r 2o | 12.3.13
Iy ()| P ( )
where z = ¢%/%, The reflection response has a zero at z = —1 or 6 = 11/2, which occurs

at f = fo and at odd multiples of fy. The wave impedance at interface-1 will be:

Zp +jZitand
=z, SLTJA1 12.3.14
Zi=Zig +jZ tand (12.3.14)
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Using Eqg. (12.3.10), we obtain the matching condition at f = fj, or at 6 = 11/2:
Zi _

Z=75 =

Zy (12.3.15)

Example 12.3.1: Single-section quarter wavelength transformer. Design a single-section trans-
former that will match a 200-ohm load to a 50-ohm line at 100 MHz. Determine the band-
width over which the SWR on the line remains less than 1.5.

Solution: The quarter-wavelength section has impedance Z, = /Z; Zy = /200 - 50 = 100 ohm.
The reflection response |I'y (f) | and the SWR S (f) = (1+II (f)|) /(1 -1y (f) ) are plotted
in Fig. 12.3.1 versus frequency.

Reflection Response Standing Wave Ratio
0.6 T T T 4 T T T
9.54 dB
0.4r 3r
2 3
< a
0.21 & 2r
A
0 ‘ : 1 ; ‘
0 50 100 150 200 0 50 100 150 200
f (MHz) f (MHz)

Fig. 12.3.2 Reflection response and line SWR of single-section transformer.
The reflection coefficient of the unmatched line and the maximum tolerable reflection
response over the desired bandwidth are:

 Zi-Zy  200-50
L= Zi+Zy)  200+50

Smax—1 _1.5-1
Smax + 1 1.5+1

0.6, ‘Fllmax =

=0.2

It follows from Eq. (12.3.7) that the attenuation in dB over the desired band will be:

It
A = 20log;, <ﬁ
max

0.6
) = ZOlOglo (ﬁ) =9.54 dB

Because the number of sections and the attenuation are fixed, we may use the MATLAB
function chebtr3. The following code segment calculates the various design parameters:

Z0
GL

50; ZL = 200;
z29(ZL,Z0); Smax = 1.5;

fO0 = 100; f = Tinspace(0,2%f0,401); % plot over [0,200] MHz

A = 20*%T0910(GL* (Smax+1)/(Smax-1)); % Eq. (12.3.8)
[Y,a,b,DF] = chebtr3(1/z0, 1/ZL, 1, A); % note, M = 1
Z =1./Y; Df = fO*DF; L = 1/4; %mote, Z = [Zo, Z1, Zr]
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Gl = abs(multiline(Z(1:2), L, ZL, f/f0)); % reflection response |I'y (f) |
S = swr(Gl); % calculate SWR versus frequency

plot(f,C1); figure; plot(f,S);

The reflection response |I'1 (f) | is computed by mu1tiTine with frequencies normalized
to the desired operating frequency of fo = 100 MHz. The impedance inputs to muTtiline
were [Zy, Z1] and Z; and the electrical length of the segment was L = 1/4. The resulting
bandwidth is Af = 35.1 MHz. The reflection polynomials are:

Z1—Zy 1

b= [bo,bi1= [p1,p1], a=l[ag,ai]l=1[1,p3], p1= 7057, "3

Two alternative ways to compute the reflection response are by using MATLAB’s built-in
function freqz, or the function dtft:

delta = pi * f/f0/2;
Gl = abs(freqz(b,a,2*delta));
% Gl = abs(dtft(b,2*delta) ./ dtft(a,2*delta));

where 28 = Tf/f; is the digital frequency, such that z = e2/%. The bandwidth Af can be
computed from Egs. (12.3.4) and (12.3.5), that is,

2 2
+ 4 1
A=1010g10<xo e“) = Xo=4/(1+e})10410 — eF, Afoo;asin(;)
0

1+ej

where we replaced T (xg) = Xo. m]

Example 12.3.2: Three- and four-section quarter-wavelength Chebyshev transformers. Design
a Chebyshev transformer that will match a 200-ohm load to a 50-ohm line. The line SWR
is required to remain less than 1.25 over the frequency band [50,150] MHz.

Repeat the design if the SWR is required to remain less than 1.1 over the same bandwidth.

Solution: Here, we let the design specifications determine the number of sections and their
characteristic impedances. In both cases, the unmatched reflection coefficient is the same
as in the previous example, I'; = 0.6. Using Spmax = 1.25, the required attenuation in dB is
for the first case:

1.25+1

Smax + 1 125+1
1.25-1

A =201 (F
ogio | Ll Soax — 1

) = 20log;, <0.6 ) = 14.65dB

The reflection coefficient corresponding to Smax iS [I'1 lmax = (1.25-1)/(1.25+1)=1/9 =
0.1111. In the second case, we use Spmax = 1.1 to find A = 22.0074 dB and |I'1 |max =
(1.1-1)/(1.1+1)=1/21 = 0.0476.

In both cases, the operating frequency is at the middle of the given bandwidth, that is,
fo = 100 MHz. The normalized bandwidth is AF = Af/f, = (150 — 50)/100 = 1. With
these values of A, AF, the function chebtr calculates the required number of sections and
their impedances. The typical code is as follows:

12. Impedance Matching

Z0 = 50; ZL = 200;
GL = z2g(ZL,Z0); Smax = 1.25;
fl = 50; f2 = 150; % given bandedge frequencies

Df = f2-f1; f0 = (f2+f1)/2; DF = Df/f0; % operating frequency and bandwidth

A

20*T0g10(GL* (Smax+1)/(Smax-1)); % attenuation of reflectionless band
[Y,a,b] = chebtr(1/z0, 1/ZL, A, DF); % Chebyshev transformer design

Z =1./Y; rho = n2r(Y); % impedances and reflection coefficients

For the first case, the resulting number of sections is M = 3, and the corresponding output
vector of impedances Z, reflection coefficients at the interfaces, and reflection polynomials
a,b are:

Z=1Zy,721,7Z>,7Z3,7Z1]1= [50, 66.4185, 100, 150.5604, 200]

p = [p1,p2,p3,ps]1=[0.1410, 0.2018, 0.2018, 0.1410]

b = [bo,b1,b>,b3]=[0.1410, 0.2115, 0.2115, 0.1410]

a=[ag,ay,az,a3]=[1, 0.0976, 0.0577, 0.0199]

In the second case, we find M = 4 sections with design parameters:
Z=1[2y,Z1,Z>,23,Z4,Z]1= [50, 59.1294, 81.7978, 122.2527, 169.1206, 200]
p = [p1,p2,P3, P4, ps1= [0.0837, 0.1609, 0.1983, 0.1609, 0.0837]
b = [by,b1,b2,b3,bs]=[0.0837, 0.1673, 0.2091, 0.1673, 0.0837]
a = [ag,ai,az,as,as]=[1, 0.0907, 0.0601, 0.0274, 0.0070]
The reflection responses and SWRs are plotted versus frequency in Fig. 12.3.3. The upper

two graphs corresponds to the case, Symax = 1.25, and the bottom two graphs, to the case
Simax = 1.1.

The reflection responses |I'; (f)| can be computed either with the help of the function
multiline, or as the ratio of the reflection polynomials:

by + b1271 + o+ bMZiM
agp +a1Z71 + -+ aMz*M ’

|~

z=e¥, §=

I(z)= g

=

0

The typical MATLAB code for producing these graphs uses the outputs of chebtr:

f = linspace(0,2%f0,401); % plot over [0,200] MHz
M length(Z)-2; 9% number of sections

L = ones(1,M)/4; % quarter-wave lengths
Gl = abs(multiline(Zz(1:M+1), L, ZL, f/f0)); % Z is a separate input

Gl = abs(freqz(b, a, pi*f/f0)); % alternative way of computing G
S = swr(Gl); % SWR on the line

plot(f,Gl); figure; plot(f,S);
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Fig. 12.3.3 Three and four section transformers.

In both cases, the section impedances satisfy the symmetry properties (12.3.9) and the
reflection coefficients p are symmetric about their middle, as discussed in Sec. 6.8.

We note that the reflection coefficients p; at the interfaces agree fairly closely with the
reflection polynomial b—equating the two is equivalent to the so-called small-reflection
approximation that is usually made in designing quarter-wavelength transformers [808].
The above values are exact and do not depend on any approximation. m]

12.4 Two-Section Dual-Band Chebyshev Transformers

Recently, a two-section sixth-wavelength transformer has been designed [1079,1080]
that achieves matching at a frequency f and its first harmonic 2f;. Each section has
length A/6 at the design frequency f;. Such dual-band operation is desirable in certain
applications, such as GSM and PCS systems. The transformer is depicted in Fig. 12.4.1.

Here, we point out that this design is actually equivalent to a two-section quarter-
wavelength Chebyshev transformer whose parameters have been adjusted to achieve
reflectionless notches at both frequencies f; and 2f;.

Using the results of the previous section, a two-section Chebyshev transformer will
have reflection response:
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22
: e1T5 (xpcos o) mf
r 2o 20l 5= o 12.4.1
(P 1+ e3T3(xgcos §) 2 fo ( )

where [y is the frequency at which the sections are quarter-wavelength. The second-
order Chebyshev polynomial is T> (x) = 2x2 — 1 and has roots at x = +1/+/2. We require
that these two roots correspond to the frequencies f; and 2f7, that is, we set:

1 1 TT f1
01=—, 201 =——, O1=—"— 12.4.2
X0 €OS &1 7 X0 C0S 28, 7 'S o ( )
Ly 153
main line Zg FI: Z Zy Zy,
ot Py p3

Fig. 12.4.1 Two-section dual-band Chebyshev transformer.

These conditions have the unique solution (such that xy > 1):

™ mh
X0 = V2, 01 = — = —=—=
0=v2 T3 20
Thus, at f; the phase length is 6; = /3 = 271/6, which corresponds to section
lengths of I; = I, = A;/6, where A; = v/f}, and Vv is the propagation speed. Defining
also Ag = v/fp, we note that Ag = 2A;/3. According to Sec. 6.6, the most general two-
section reflection response is expressed as the ratio of the second-order polynomials:

3

Bi(z)  p1+p2(1+pip3)z ! +p3z?

I'i(f)= = (12.4.4)
o Ai(z)  14+p2(pr+p3)z-l +pipzz=2
where P ;
_ ,2j8 _nmr_mnr
PRDLI I - (12.4.5)
2fo 3f
and we used the relationship 2fy = 3f; to express ¢ in terms of f;. The polynomial
B (z) must have zeros at z = e2/01 = ¢2T/3 and z = @2/(201) = p4MJ/3 = p=2Tj/3 hepce,
it must be (up to the factor p;):
Bi(2)=p (1 —e*Bz7 1) (1-e MWz ) =p(1+2z"+27?) (12.4.6)
Comparing this with (12.4.4), we arrive at the conditions:
ps=p1, p2(L4pip)=p = po= L1y (12.4.7)
1+py

We recall from the previous section that the condition p; = p3 is equivalent to
Z1Zy = ZyZp. Using (12.4.7) and the definition p, = (Z» — Z1)/(Z> + Z1), or its
inverse, Zo = Z; (1 + p2) /(1 — p2), we have:

g2 Ltp _ PP+l .37+ Z§

212y =212 = = =
Lo 142 11*[]2 1p%—p1+1 1Z%+32(2)

(12.4.8)
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where in the last equation, we replaced p, = (Z1—Zy)/ (Z1 + Zy). This gives a quadratic
equation in Z 12 Picking the positive solution of the quadratic equation, we find:

Z
7 = \/EO [zL - Zo+(ZL - Zo>2+362LZO] (12.4.9)

Once Z; is known, we may compute Z, = Z;Zy/Z;. Eq. (12.4.9) is equivalent to the
expression given by Monzon [1080].

The sections are quarter-wavelength at fy and sixth-wavelength at fi, that is, I =
I, = A1/6 = Ag/4. We note that the frequency fj lies exactly in the middle between f;
and 2f}. Viewed as a quarter-wavelength transformer, the bandwidth will be:

(T Af) 1 1
sinf ——— ) =—=— = Af=fy=1.5 (12.4.10)
) -x-7% f=fo=15h
which spans the interval [fy — Af/2,fo + Af/2]= [0.75f1,2.25f1]. Using T>(xg)=
ZX(Z) — 1 = 3 and Eq. (12.3.6), we find the attenuation achieved over the bandwidth Af:

2
+
J(1+€2)10410 2 = Ty (x)=3 = A =10log, (L—Zg) (12.4.11)
0

As an example, we consider the matching of Z; = 200 Q to Zy = 50 Q. The section
impedances are found from Eq. (12.4.9) to be: Z; 80.02 Q, Z, = 124.96 Q. More
simply, we can invoke the function chebtr2 with M = 2 and AF = Af/fy = 1.

Fig. 12.4.2 shows the designed reflection response normalized to its dc value, that
is, I’y (f)|2/|I'1 (0) |2. The response has exact zeros at [} and 2f;. The attenuation was
A = 7.9 dB. The reflection coefficients were p; = p3 = 0.2309 and p, = p1/(1 + pf) =
0.2192, and the reflection polynomials:

B1(2)=0.2309(1+z '+2z7%), Ai(z)=1+0.1012z"" +0.05332z72

7, =200, Zy=50, r=2.0
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Fig. 12.4.2 Reflection response |I'; (f) | normalized to unity gain at dc.

The reflection response can be computed using Eq. (12.4.1), or using the MATLAB
function multiline, or the function freqz and the computed polynomial coefficients.
The following code illustrates the computation using chebtr2:
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Z0 = 50; ZL = 100; x0 = sqrt(2); e0sq = (ZL-Z0)A2/(4%ZL*Z0); elsq = e0sq/9;

[Y,al,bl,A] = chebtr2(1/z0, 1/ZL, 2, 1); %a; = [1, 0.1012, 0.0533]

%by = [0.2309, 0.2309, 0.2309]
% Z = [50, 80.02, 124.96, 200]
% p = [0.2309, 0.2192, 0.2309]
% f is in units of f1

Z = 1./Y; rho = n2r(Z0*Y);

f = linspace(0,3,301);
delta = pi*f/3; x = x0*cos(delta); T2 = 2*x.A2-1;

Gl = elsq*T2.A2 ./ (1 + elsq*T2.A2);

% Gl = abs(multiline(Z(1:3), [1,1]/6, ZL, f)).A2; % alternative calculation
% Gl = abs(freqz(bl,al, 2*delta)).A2; % alternative calculation
% Gl = abs(dtft(bl,2*delta)./dtft(al,2*delta)).A2; % alternative calculation

plot(f, G1/G1(1));

The above design method is not restricted to the first and second harmonics. It can
be generalized to any two frequencies fi, f> at which the two-section transformer is
required to be reflectionless [1081,1082].

Possible applications are the matching of dual-band antennas operating in the cellu-
lar/PCS, GSM/DCS, WLAN, GPS, and ISM bands, and other dual-band RF applications for
which the frequency f> is not necessarily 2f;.

We assume that f1 < f>, and define r = f>/f1, where ¥ can take any value greater
than unity. The reflection polynomial B, (z) is constructed to have zeros at f7, f2:

mh o _ T
2fo” 70 2fo

The requirement that the segment impedances, and hence the reflection coefficients
P1, P2, P3, be real-valued implies that the zeros of B, (z) must be conjugate pairs. This
can be achieved by choosing the quarter-wavelength normalization frequency fj to lie
half-way between f1, f», that is, fo = (f1 + f2) /2 = (r + 1)f1/2. This implies that:

Bi(z)=p1(1 —e2017z71) (1 —e¥o2271) | 5§, = (12.4.12)

T

51 =
YTk

, Or=ro1 =1 —-061 (12.4.13)

The phase length at any frequency f will be:

wf m f

= = — 12.4.14

2 fo r+1 f1 ( )

The section lengths become quarter-wavelength at fy and 2 (v + 1)-th wavelength at fi:
Ao A

L=h=—=—""— 12.4.15

YTRET 4 T2+ ) )

It follows now from Eq. (12.4.13) that the zeros of B, (z) are complex-conjugate pairs:
@202 = 2(m=01) — p=2J01 (12.4.16)
Then, B; (z) takes the form:

Bi(2)=p (1 —e¥01z7 1) (1—e %%z 1) = p;(1-2cos28,z ' +2z7%)  (12.4.17)
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Comparing with Eq. (12.4.4), we obtain the reflection coefficients:

2p1cos20,

12.4.18
1+p? ( )

p3=p1, P2=-—

Proceeding as in (12.4.8) and using the identity tan? §; = (1—cos25)/(1+cos251),
we find the following equation for the impedance Z; of the first section:

221+p2 o Pi—2p1cos28,+1 _,Zitan® 8y + Z5

Z1Zo=2721Z> = = = = : - 12.4.19
L0 = oo =2y p, T Y p2 i 2picos28, +1 ' Z2 + Z3 tan? 6, ( )
with solution for Z; and Z>:
Zy [ ] ZoZL
Zi=.———|Z1 —Zo++(ZL — Zo)2+4Z; Zptan* 61 |, Z» = ——= (12.4.20
1 \/2tan2 5, |4 %0 \/( L — Zo) LZotan* 01 2= ( )

Equations (12.4.13), (12.4.15), and (12.4.20) provide a complete solution to the two-
section transformer design problem. The design equations have been implemented by

the MATLAB function dualband:
[721,72,al1,bl] = dualband(Z0,ZL,r);

% two-section dual-band Chebyshev transformer

where a;, b, are the coefficients of A; (z) and B, (z). Next, we show that B (z) is indeed
proportional to the Chebyshev polynomial T> (x). Setting z = %%, where § is given by
(12.4.14), we find:

Bi(z) =pi(z+2z 1 —2c0s28,)z"! = p1(2cos 25 — 2 cos 25, ) e~

cos? S
cos2 0,

= 4p, (cos® § — cos® 51)e %% = 4p; cos® &, ( 1)e=%0 (12.4.21)

= 4p; cos® &, (2x3 cos® & — 1)e 2% = 4p; cos? 5, T2 (Xg cos §) e %0
where we defined: 1
= J2c0s 8,

We may also show that the reflection response |I'y (f) |2 is given by Eq. (12.4.1). At
zero frequency, 5 = 0, we have T (xo) = 2x3 — 1 = tan® §;. As discussed in Sec. 6.8, the
sum of the coefficients of the polynomial By (z), or equivalently, its value at dc, 6 = 0
or z = 1, must be given by |B; (1) |2 = o2e3, where

X0 (12.4.22)

(Z1 — Zy)*

2 _ (1 _p2 —p? - p3 5
cP=1-pH1-pH(A-p3), €} 47, 7o

(12.4.23)

Using Eq. (12.4.21), this condition reads 2e3 = |B; (1) |2 = 16p? cos* 5, T3 (x¢), or,
02e3 = 16p?sin* 5. This can be verified with some tedious algebra. Because e5 =
e3/T3 (xo), the same condition reads o?e? = 16p? cos? 5;.

It follows that |B1(z)|?> = 02e3T3(x). On the other hand, according to Sec. 6.6,
the denominator polynomial A; (z) in (12.4.4) satisfies |A;(z)|% — |B1(2)|? = o2, or,
|A1(2)|? = 02 + |B; (2)|2. Therefore,

CBi@ 2 |Bi(2)? 02e3T3 (x) e3T3(x)

= > = — 5 = - = 12.4.24
[A1(2)12 02+ |B1(2)|12 o2+ 02e5T5(x)  1+eiT5(x) ( )

Ty (F) 12
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Thus, the reflectance is identical to that of a two-section Chebyshev transformer.
However, the interpretation as a quarter-wavelength transformer, that is, a transformer
whose attenuation at fj is less than the attenuation at dc, is valid only for a limited
range of values, that is, 1 < r < 3. For this range, the parameter x( defined in (12.4.22)
is Xo > 1. In this case, the corresponding bandwidth about f; can be meaningfully
defined through Eq. (12.3.4), which gives:

. T AfN _ L
s1n<2(r7+1)]71> =2cosd; = \/Ecos(r_l_ 1) (12.4.25)

For 1 < r < 3, the right-hand side is always less than unity. On the other hand, when
¥ > 3, the parameter xo becomes Xy < 1, the bandwidth Af loses its meaning, and the
reflectance at f; becomes greater than that at dc, that is, a gain. For any value of r, the
attenuation or gain at f can be calculated from Eq. (12.3.5) with M = 2:

T3 (x0) +e3 tan? 5, + €3
A =101 ————— ] =101 —_— 12.4.26
810 ( 1+¢e} 810 1+¢e} ( )

The quantity A is positive for 1 < r < 3 or tand; > 1, and negative for r > 3 or
tand; < 1. For the special case of ¥ = 3, we have §; = 1/4 and tand; = 1, which
gives A = 0. Also, it follows from (12.4.18) that p> = 0, which means that Z; = Z» and
(12.4.19) gives Z f = Z1Zy. The two sections combine into a single section of double
length 21, = A1/4 at fi, that is, a single-section quarter wavelength transformer, which,
as is well known, has zeros at odd multiples of its fundamental frequency.

For the case ¥ = 2, we have §; = 71/3 and tan 6; = /3. The design equation (12.4.20)
reduces to that given in [1080] and the section lengths become A /6.

Fig. 12.4.3 shows two examples, one with r = 2.5 and one with r = 3.5, both trans-
forming Z; = 200 into Zy = 50 ohm.

7, =200, Zy=50, r=25 Z, =200, Z,=50, r=35

1 16
14t
2 081 2.9 dB @ 19}
g g
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Q Q
~ Af & s
g g
g 0.4f § 0.6}
= =
& Afy & 04
0.2 fO
fo 0.2 l
0 ‘ ‘ ‘ ‘ 0 ‘ N BN ‘
o o5 1 15 2 25 3 35 0 05 1 15 2 25 3 35 4 45
flf flfi

Fig. 12.4.3 Dual-band transformers at frequencies {f1,2.5f1} and {f1, 3.5f1}.

The reflectances are normalized to unity gain at dc. For r = 2.5, we find Z; = 89.02
and Z, = 112.33 ohm, and attenuation A = 2.9 dB. The section lengths at f} are I; =
I, =A1/(2(2.5+1))= A/7. The bandwidth Af calculated from Eq. (12.4.25) is shown
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on the left graph. For the case r = 3.5, we find Z; = 112.39 and Z» = 88.98 ohm and
section lengths I; = I, = A1/9. The quantity A is negative, A = —1.7 dB, signifying a
gain at fy. The polynomial coefficients were in the two cases:

r=2.5, a; =[1, 0.0650,0.0788], b; =[0.2807, 0.1249, 0.2807]
r =3.5, a; = [1, —0.0893, 0.1476], b; = [0.3842, —0.1334, 0.3842]

The bandwidth about f; and f» corresponding to any desired bandwidth level can be
obtained in closed form. Let I'g be the desired bandwidth level. Equivalently, I's can be
determined from a desired SWR level Sp through I's = (Sp—1)/(Sg+1). The bandedge
frequencies can be derived from Eq. (12.4.24) by setting:

Ty (f) 17 =T}
Solving this equation, we obtain the left and right bandedge frequencies:

flL:Z_ITﬁasin(MSin(Sl), f2r = 2fo — f1L

(12.4.27)

f1R=2?ﬂ)asin(\/1+asin61), for = 2fo — fir

where fo = (f1 + [2)/2 and a is defined in terms of I'z and I'; by:

2 o1-r21"% sp—1[s
a=|—ty-—Lt| =3 =L (12.4.28)
1-T5 I3 St -1V Sp

where I'y = (Zp —Zo)/(Zr +Zp) and S = (1 +|I'L|)/(1—|I'L|). We note the symmetry
relations: fiz + f2r = f1r + [2L = 2fo. These imply that the bandwidths about f; and f»
are the same:

Afg =fir —f1L = f2r — faL (12.4.29)
The MATLAB function dualbw implements Egs. (12.4.27):

[f1L,f1R,f2L,f2R] = dualbw(ZL,Z0,r,GB);

% bandwidths of dual-band transformer

The bandwidth Afp is shown in Fig. 12.4.3. For illustration purposes, it was com-
puted at a level such that I'/I' = 0.2.

12.5 Quarter-Wavelength Transformer With Series Section

One limitation of the Chebyshev quarter-wavelength transformer is that it requires the
load to be real-valued. The method can be modified to handle complex loads, but gen-
erally the wide bandwidth property is lost. The modification is to insert the quarter-
wavelength transformer not at the load, but at a distance from the load corresponding
to a voltage minimum or maximum.

For example, Fig. 12.5.1 shows the case of a single quarter-wavelength section in-
serted at a distance L, from the load. At that point, the wave impedance seen by the
quarter-wave transformer will be real-valued and given by Zn,in = Zo/S, where Sy is the
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Fig. 12.5.1 Quarter-wavelength transformer for matching a complex load.

SWR of the unmatched load. Alternatively, one can choose a point of voltage maximum
Lmax at which the wave impedance will be Zyx = ZoSt.

As we saw in Sec. 10.13, the electrical lengths Ly,in or L.y are related to the phase
angle 61 of the load reflection coefficient I';, by Egs. (10.13.2) and (10.13.3). The MAT-
LAB function Tmin can be called to calculate these distances and corresponding wave
impedances.

The calculation of the segment length, Ly or L.y, depends on the desired match-
ing frequency fy. Because a complex impedance can vary rapidly with frequency, the
segment will have the wrong length at other frequencies.

Even if the segment is followed by a multisection transformer, the presence of the
segment will tend to restrict the overall operating bandwidth to essentially that of a
single quarter-wavelength section. In the case of a single section, its impedance can be
calculated simply as:

— 1 [—
Zl= Zozmin=EZ() and Zl= Z()Zmax= SLZ() (12.5.1)

Example 12.5.1: Quarter-wavelength matching of a complex load impedance. Design a quarter-
wavelength transformer of length M = 1,3,5 that will match the complex impedance
Z1 = 200+ j100 ohm to a 50-ohm line at fy = 100 MHz. Perform the design assuming the
maximum reflection coefficient level of |I'} |pax = 0.1.

Assuming that the inductive part of Z; arises from an inductance, replace the complex load
by Z; = 200 + j100f/f, at other frequencies. Plot the corresponding reflection response
Ty ()| versus frequency.

Solution: At fj, the load is Z; = 200 + j100 and its reflection coefficient and SWR are found to
be [I't| = 0.6695 and S; = 5.0521. It follows that the line segments corresponding to a
voltage minimum and maximum will have parameters:

1
Liin = 0.2665, Zmin = ?Zo =9.897, Linax = 0.0165, Zmax = S1Zo = 252.603
L

For either of these cases, the effective load reflection coefficient seen by the transformer
willbe [I'| = (Sp—1)/(S.+1)= 0.6695. It follows that the design attenuation specification
for the transformer will be:

r 0.6695
A:2010g10<#> :ZOlOgIO(T> =16.5155 dB
max -

With the given number of sections M and this value of the attenuation A, the following
MATLAB code will design the transformer and calculate the reflection response of the
overall structure:
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Z0 = 50; ZLO = 200 + 100j; % load impedance at f

[Lmin, Zmin] = Imin(ZLO,Z0, ’min’); % calculate Lmin

Gmin = abs(z2g(Zmin,Z0)); Glmax = 0.1;
A = 20*%T10910(Gmin/Glmax) ;

% design based on Zmin

M= 3;

Z 1./chebtr3(1/20, 1/Zmin, M, A);
Ztot = [Z(1:M+1), Z0];

Ltot = [ones(1,M)/4, Lmin];

% three-section transformer

% concatenate all sections
% electrical lengths of all sections

o 100; f = linspace(0,2*f0, 801);
ZL = 200 + j*100*f/f0;

% assume inductive load

Gl = abs(multiline(Ztot, Ltot, ZL, f/f0)); % overall reflection response

where the designed impedances and quarter-wavelength segments are concatenated with
the last segment of impedance Z, and length Ly or Lyax. The corresponding frequency
reflection responses are shown in Fig. 12.5.2.

Liin = 0.2665, Z,, = 9.897

Loy = 0.0165, Z,,. = 252.603

0 5b 100 150 200 0 5b 100 150 200
f (MHz) f (MHz)

Fig. 12.5.2 Matching a complex impedance.

The calculated vector outputs of the transformer impedances are in the L, case:
Z =[50, 50/S}?, 50/S.1= [50, 22.2452, 9.897]
Z =[50, 36.5577, 22.2452, 13.5361, 9.897]
Z =[50, 40.5325, 31.0371, 22.2452, 15.9437, 12.2087, 9.897]
and in the L.« case:
Z =[50, 505}/2, 505,1= [50, 112.3840, 252.603]
Z = [50, 68.3850, 112.3840, 184.6919, 252.603]
Z =[50, 61.6789, 80.5486, 112.3840, 156.8015, 204.7727, 252.603]

We note that there is essentially no difference in bandwidth over the desired design level
of |I'1 |max = 0.1 in the Ly, case, and very little difference in the L, case. 0
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The MATLAB function qwtl implements this matching method. Its inputs are the
complex load and line impedances Z;, Z, and its outputs are the quarter-wavelength
section impedance Z; and the electrical length L, of the Zj-section. It has usage:

[Z1,Lm] = qwtl(ZL,Z0,type);

% A /4-transformer with series section

where type is one of the strings 'min’ or ’max’, depending on whether the first section
gives a voltage minimum or maximum.

12.6 Quarter-Wavelength Transformer With Shunt Stub

Two other possible methods of matching a complex load are to use a shorted or opened
stub connected in parallel with the load and adjusting its length or its line impedance
so that its susceptance cancels the load susceptance, resulting in a real load that can
then be matched by the quarter-wave section.

In the first method, the stub length is chosen to be either A/8 or 3A/8 and its
impedance is determined in order to provide the required cancellation of susceptance.

In the second method, the stub’s characteristic impedance is chosen to have a conve-
nient value and its length is determined in order to provide the susceptance cancellation.

These methods are shown in Fig. 12.6.1. In practice, they are mostly used with
microstrip lines that have easily adjustable impedances. The methods are similar to the
stub matching methods discussed in Sec. 12.8 in which the stub is not connected at the
load but rather after the series segment.

A4 a A4
D D
main line Zy Z1 main line  Z
O O
- Jd=2AR
short/open | or. 3A/8 short/open |

/
v

v

Fig. 12.6.1 Matching with a quarter-wavelength section and a shunt stub.

LetY; = 1/Z; = G + jBy be the load admittance. The admittance of a shorted stub
of characteristic admittance Y, = 1/Z, and length d is Ysup = —jY» cot d and that of
an opened stub, Yy, = jY? tan fd.

The total admittance at point a in Fig. 12.6.1 is required to be real-valued, resulting
in the susceptance cancellation condition:

Yo=Y +Ysuw =Gr +j(BL —YocotBd)=Gr = Y,cotBd=Bp (12.6.1)

For an opened stub the condition becomes Y, tan fd = —B;. In the first method,
the stub length is d = A/8 or 3A/8 with phase thicknesses fd = 11/4 or 37r/4. The
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corresponding values of the cotangents and tangents are cotfd = tanfd = 1 or
cotfd =tanfd = —1.

Then, the susceptance cancellation condition becomes Y, = B; for a shorted A/8-
stub or an opened 3A/8-stub, and Y, = —B; for a shorted 3A/8-stub or an opened
A/8-stub. The case Y, = B; must be chosen when B; > 0 and Y, = —B;, when By < 0.

In the second method, Z» is chosen and the length d is determined from the condition
(12.6.1), cot Bd = Br/Y» = Z»By for a shorted stub, and tan fd = —Z,B; for an opened
one. The resulting d must be reduced modulo A/2 to a positive value.

With the cancellation of the load susceptance, the impedance looking to the right
of point a will be real-valued, Z; = 1/Y,; = 1/G. Therefore, the quarter-wavelength

section will have impedance:
[ Zo
71 =+|Z07, = | =2 12.6.2
1 =+ Z0Za GL ( )

The MATLAB functions qwt2 and qwt3 implement the two matching methods. Their
usage is as follows:

[71,22] = qwt2(ZL,Z0);
[z1,d] qwt3(ZL,Z0,22, type)

% A /4-transformer with A/8 shunt stub
% A /4-transformer with shunt stub of given impedance

where type takes on the string values s’ or ’o’ for shorted or opened stubs.

Example 12.6.1: Design quarter-wavelength matching circuits to match the load impedance
Zr = 15 + 20j Q to a 50-ohm generator at 5 GHz using series sections and shunt stubs.
Use microstrip circuits with a Duroid substrate (€, = 2.2) of height h = 1 mm. Determine
the lengths and widths of all required microstrip sections, choosing always the shortest
possible lengths.

Solution: For the quarter-wavelength transformer with a series section, it turns out that the
shortest length corresponds to a voltage maximum. The impedance Z; and section length
Ly are computed with the MATLAB function qwt1:

[Z1, Lmax]= qwtl(Z, Zy, max’) = Z; = 98.8809 Q, Lma = 0.1849

The widths and lengths of the microstrip sections are designed with the help of the func-
tions mstripr and mstripa. For the quarter-wavelength section Z;, the corresponding
width-to-height ratio u; = w;/h is calculated from mstripr and then used in mstripa to
get the effective permittivity, from which the wavelength and length of the segment can
be calculated:

u, = mstripr(€,, Z;)= 0.9164, w; = uh = 0.9164 mm
A A
O —45151cm, L = Zl =1.1288 cm

€eff = mstripa(€,, uy)=1.7659, A, =
eff

where the free-space wavelength is Ao = 6 cm. Similarly, we find for the series segment
with impedance Z, = Z, and length L, = Lyax:

u, = mstripr(€,, Z») = 3.0829, w, = uxh = 3.0829 mm

Ao
=4.3745cm, I, =LA, = 0.8090 cm
e 2 272

For the case of the A/8 shunt stub, we find from qwt2:

Eefr = mstripa(ey, uz) = 1.8813, A, =
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[Z1,Z,]=qwt2(Z;, Zy) = [45.6435, -31.2500] Q

where the negative Z, means that we should use either a shorted 3A/8 stub or an opened
A/8 one. Choosing the latter and setting Z, = 31.25 Q, we can go on to calculate the
microstrip widths and lengths:

u, = mstripr(€,, Z;) = 3.5241, w; = uyh = 3.5241 mm

) A A
€efr = mstripa(€y, uy) = 1.8965, A, = E(fo =4.3569cm, I, = Zl = 1.0892 cm
Uy = mstripr(€,, Z») = 5.9067, w, = uxh = 5.9067 mm

. A A
€ert = mstripa(er, ur) = 1.9567, A, = \/% =4.2894 cm, I, = gz =0.5362 cm

For the third matching method, we use a shunt stub of impedance Z, = 30 Q. It turns out
that the short-circuited version has the shorter length. We find with the help of qwt3:

[Z1,d]=qwt3(Z1, Zo,Z2,’S’) = Z; =45.6435Q, d=0.3718
The microstrip width and length of the quarter-wavelength section Z; are the same as in
the previous case, because the two cases differ only in the way the load susceptance is

canceled. The microstrip parameters of the shunt stub are:

u, = mstripr(€,, Z») = 6.2258, w; = uxh = 6.2258 mm
A
€Eeff = mstripa (€, up) = 1.9628, A, = 20— 42826 cm, [» =dA; =1.5921 cm

~/ Eeff
Had we used a 50 Q shunt segment, its width and length would be w, = 3.0829 mm and
I, = 1.7983 cm. Fig. 12.6.2 depicts the microstrip matching circuits. m]
e ] —te— ) —
1 2 wq Zl
e ]
f— 11

Z1 7z
" " . : -
Z 2
L i W, L

Fig. 12.6.2 Microstrip matching circuits.

12.7 Two-Section Series Impedance Transformer

One disadvantage of the quarter-wavelength transformer is that the required impedan-
ces of the line segments are not always easily realized. In certain applications, such
as microwave integrated circuits, the segments are realized by microstrip lines whose
impedances can be adjusted easily by changing the strip widths. In other applications,
however, such as matching antennas to transmitters, we typically use standard 50- and
75-ohm coaxial cables and it is not possible to re-adjust their impedances.
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The two-section series impedance transformer, shown in Fig. 12.7.1, addresses this
problem [1069,1070]. It employs two line segments of known impedances Z, and Z»
that have convenient values and adjusts their (electrical) lengths L; and L, to match
a complex load Z; to a main line of impedance Zy. Fig. 12.7.1 depicts this kind of
transformer.

The design method is identical to that of designing two-layer antireflection coatings
discussed in Sec. 6.2. Here, we modify that method slightly in order to handle complex
load impedances. We assume that Z,, Z;, and Z; are real and the load complex, Z; =
Ry +jXL.

<~ Li—><—L >

main line Zo r : Z, 7> 7L

P1 P2 P3
Fig. 12.7.1 Two-section series impedance transformer.

Defining the phase thicknesses of the two segments by 6, = 2mwnyl1/A¢ = 21L;
and &, = 21Nyl /Ag = 2Ly, the reflection responses I'y and I'» at interfaces 1 and 2

are: _
_ pr+Ipe 0

T 1+ pile s’

_ P2t pze ¥
1 2 = i
1+ papse2/o:

where the elementary reflection coefficients are:

71— Z -7 L~

_ZlJrZ(), pz_ZerZ], p:;_Z]_+Zz

P1

The coefficients p;, p» are real, but p3 is complex, and we may represent it in polar
form p3 = |p3le/%. The reflectionless matching condition is I'} = 0 (at the operating

free-space wavelength Ao). This requires that p; + I'>e~%%1 = 0, which implies:
i I
QMo = "2 (12.7.1)
P1

Because the left-hand side has unit magnitude, we must have the condition |I';| =
Ip1l, or, [T2|? = p?, which is written as:

p2 + |p3leifse—2% _ P} + 1ps1° + 2p2lp3l cos (282 — 03) _
1+ p2|p3leifse=2d: 1+ p3lp3|2 + 2p2|psl cos (282 — 03) !

Using the identity cos (28, — 03) = 2 cos? (5, — 03/2) —1, we find:

cos? (85 — @) _ Pi(1 = palps)®=(p2 — lps))?

2 4p21ps| (1 - pf)
2_ 2 ) (12.7.2)
sin® (82 — ﬁ) _ 2+ lpsh =P +202|P3|)
2 4palpsl (1 - p7)
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Not every combination of pi, p2, p3 will result into a solution for 8, because the
left-hand sides must be positive and less than unity. If a solution for §, exists, then §;
is determined from Eq. (12.7.1). Actually, there are two solutions for &, corresponding
to the + signs of the square root of Eq. (12.7.2), that is, we have:

1/2
1 p%(l—pzlpal)z—(pz—Ipxl)2>
0 = =03 +acos | = (12.7.3)
T2 {( 4pa1psl (1 - p?)

If the resulting value of &, is negative, it may be shifted by 1 or 27t to make it
positive, and then solve for the electrical length L, = §,/27T. An alternative way of
writing Egs. (12.7.2) is in terms of the segment impedances (see also Problem 6.6):

0: (Z3 — Z370) (Z37% — ZoZ5)
2 0o — 73y = 2 1 2
cos® (62 = 7) 722D (2= 2D
(12.7.4)
sin’ (8, — @) = Z3(Zo — Z3) (Z§ — ZoZ3)
Y wB-B) 7 -1

where Z3 is an equivalent “resistive” termination defined in terms of the load impedance
through the relationship:

Zy — 2>
Zr + 72>

75— 7
22 = py| = ‘ (12.7.5)

Z3+Zz_

Clearly, if Z; is real and greater than Z,, then Z3 = Zj, whereas if it is less that
Z>, then, Z3 = zg/ Z;. Eq. (12.7.4) shows more clearly the conditions for existence
of solutions. In the special case when section-2 is a section of the main line, so that
Zy = Zy, then (12.7.4) simplifies to:

05 7378 — 73
2 _Usy 1-%0
cos* (62 = =) (Z3 + 20) (22— Z2)
(12.7.6)
sin? (8, — @) _ Z0(Z% — ZoZ3)
272 (Z3 + Zo) (22— 72)

It is easily verified from these expressions that the condition for the existence of
solutions is that the equivalent load impedance Z3 lie within the intervals:

Z3 2
785235?, if Zy > Zy
! 0 (12.7.7)
Z—% <Z3< Z—S if Z,<Z
Z() = 43 = Z% ’ 1 0
They may be combined into the single condition:
Zy > max (Z1, Zo)
— <73 < 7p8° |, = —— = 21,7, 12.7.8
5 3= 2o min(Zy, Zo) swr(Z1, Zo) ( )
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Example 12.7.1: Matching range with 50- and 75-ohm lines. If Zy = 50 and Z; = 75 ohm, then
the following loads can be matched by this method:

50° 752

752 <Z3< =0 => 22.22<73<11250Q

And, if Zy = 75 and Z; = 50, the following loads can be matched:

502 753
—— <Z3< — .33 <73 <168.75Q

73 35 502 = 33.33 3 68.75

In general, the farther Z; is from Z,, the wider the range of loads that can be matched.
For example, with Zy = 75 and Z; = 300 ohm, all loads in the range from 4.5 to 1200 ohm
can be matched. m]

The MATLAB function twosect implements the above design procedure. Its inputs
are the impedances Zy, Z,, Z», and the complex Z;, and its outputs are the two solutions
for L, and L,, if they exist. Its usage is as follows, where L, is a 2X2 matrix whose
rows are the two possible sets of values of Ly, Ly:

L12 = twosect(Z0,71,72,7ZL); 9% two-section series impedance transformer

The essential code in this function is as follows:

rl = (Z1-20)/(Z1+20);
r2 = (22-71)/(Z2+71);
r3 = abs((ZL-22)/(ZL+Z2));

th3 = angle((ZL-Z2)/(ZL+Z2));

s = ((r2+r3)A2 - r1A2*(1+r2*r3)A2) / (4*r2*r3*(1-rl1A2));
if (s<0)|(s>1), fprintf(’no solution exists’); return; end

de2 = th3/2 + asin(sqrt(s)) * [1;-1]; % construct two solutions
G2 = (r2 + r3*exp(j*th3-2*j*de2)) ./ (1 + r2*r3*exp(j*th3-2*j*de2));
del = angle(-G2/rl1)/2;

L1 = del/2/pi; L2 = de2/2/pi;

L12 = mod([L1,L2], 0.5); % reduce modulo A /2

Example 12.7.2: Matching an antenna with coaxial cables. A 29-MHz amateur radio antenna
with input impedance of 38 ohm is to be fed by a 50-ohm RG-58/U cable. Design a two-
section series impedance transformer consisting of a length of RG-59/U 75-ohm cable
inserted into the main line at an appropriate distance from the antenna [1070]. The velocity
factor of both cables is 0.79.

Solution: Here, we have Z, = 50, Z; = 75, Z» = Zy, and Z; = 38 ohm. The call to the function
twosect results in the MATLAB output for the electrical lengths of the segments:

Lo, = 0.0536  0.3462 L, =0.0536, L, =0.3462
1271 0.4464 0.1538 L, =0.4464, L, =0.1538
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Using the given velocity factor, the operating wavelength is A = 0.79A9 = 0.79¢o/fy =
8.1724 m, where [y = 29 MHz. Therefore, the actual physical lengths for the segments are,
for the first possible solution:

I, = 0.0536A = 0.4379 m = 1.4367 ft, [, = 0.3462A = 2.8290 m = 9.2813 ft
and for the second solution:
I, = 0.4464A = 3.6483 m = 11.9695 ft, [, = 0.1538A = 1.2573 m = 4.1248 ft
Fig. 12.7.2 depicts the corresponding reflection responses at interface-1, |I'; (f) |, as a func-

tion of frequency. The standing wave ratio on the main line is also shown, that is, the
quantity Sy (f)= (1 + [T () 1)/ (1 = [T1(f)]).

Reflection Response

0.8 solution 1 3.5
solution 2

Standing Wave Ratio

15 2

0 0.5

1
flfo
Fig. 12.7.2 Reflection response of two-section series transformer.

The reflection response was computed with the help of muTtiline. The typical MATLAB
code for this example was:

Z0 50; Z1 = 75; ZL = 38;
c0 = 3e8; fO = 29e6; vf = 0.79;
1a0 c0/f0; 1a = 1a0*vf;

L12 = twosect(Z0,71,70,ZL);

f = Tinspace(0,2,401); % in units of fo
Gl = abs(multiline([Z0,Z1,20],L12(1,:),ZL,T)); % reflection response 1
G2 = abs(multiline([Z0,Z1,20],L12(2,:),ZL,T)); % reflection response 2
S1=(1+G1)./(1-G1); S2=(1+G2)./(1-G2); 9% SWRs
We note that the two solutions have unequal bandwidths. m]

Example 12.7.3: Matching a complex load. Design a 75-ohm series section to be inserted into
a 300-ohm line that feeds the load 600 + 900j ohm [1070].

Solution: The MATLAB call
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L12 = twosect(300, 75, 300, 600+9003);

produces the solutions: L; = [0.3983, 0.1017] and L, = [0.2420, 0.3318]. O

One-section series impedance transformer

We mention briefly also the case of the one-section series impedance transformer, shown
in Fig. 12.7.3. This is one of the earliest impedance transformers [1064-1068]. It has
limited use in that not all complex loads can be matched, although its applicability can
be extended somewhat [1068].

<~ Li—
main line Zo I :: 7 ZL
P 0>

Fig. 12.7.3 One-section series impedance transformer.

Both the section impedance Z; and length L; are treated as unknowns to be fixed
by requiring the matching condition I'y = 0 at the operating frequency. It is left as an
exercise (see Problem 12.9) to show that the solution is given by:

/ ZoX} 1 [zwzo—RL)]
Z1 =+|ZoR — —+=— L, = —at _ 12.7.9
1 oRL =7 g, L= o atn 70X, ( )

provided that either of the following conditions is satisfied:

2

X
Zo <Ry or Zy>Rp+ R—L (12.7.10)
L

In particular, there is always a solution if Z; is real. The MATLAB function onesect
implements this method. It has usage:

[Z1,L1] = onesect(ZL,Z0);

% one-section series impedance transformer

where L; is the normalized length L, = I;/A4, with I; and A; the physical length and
wavelength of the Z; section. The routine outputs the smallest positive L;.

12.8 Single Stub Matching

Stub tuners are widely used to match any complex load? to a main line. They consist of
shorted or opened segments of the line, connected in parallel or in series with the line
at a appropriate distances from the load.

TThe resistive part of the load must be non-zero. Purely reactive loads cannot be matched to a real line
impedance by this method nor by any of the other methods discussed in this chapter. This is so because
the transformation of a reactive load through the matching circuits remains reactive.
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In coaxial cable or two-wire line applications, the stubs are obtained by cutting ap-
propriate lengths of the main line. Shorted stubs are usually preferred because opened
stubs may radiate from their opened ends. However, in microwave integrated circuits
employing microstrip lines, radiation is not as a major concern because of their smaller
size, and either opened or shorted stubs may be used.

The single stub tuner is perhaps the most widely used matching circuit and can
match any load. However, it is sometimes inconvenient to connect to the main line if
different loads are to be matched. In such cases, double stubs may be used, but they
cannot match all loads. Triple stubs can match any load. A single stub tuner is shown
in Figs. 12.8.1 and 12.8.2, connected in parallel and in series.

a /
T T
main line Zj Zy—>
r
Zy
short/open i d

/
v

Fig. 12.8.1 Parallel connection of single stub tuner.

P
T i C
main line Zj Zy—>
C C
Zy d

short/open

Fig. 12.8.2 Series connection of single stub tuner.

In the parallel case, the admittance Y, = 1/Z, at the stub location a is the sum of
the admittances of the length-d stub and the wave admittance at distance I from the
load, that is,

1-1I;
+Ystub

Ya=YI+Ystub=Y01+rl

where I = I'te 2B, The admittance of a short-circuited stub is Ygup = —jY( cot 8d,
and of an open-circuited one, Yy, = jY tan Bd. The matching condition is that Y, =
Y. Assuming a short-circuited stub, we have:
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1-I7 . -1 .
Y —JjYpcotBd =Y —Jjcotfd =1
e JYocotB Ay JcotB
which can be rearranged into the form:
. 1
2jtanBd =1 + T (12.8.1)
I

Inserting I'7 = I're %8l = |} |e/0.-2Bl where I't = |I'1]e/O is the polar form of the
load reflection coefficient, we may write (12.8.1) as:

ej(ZBI_HL)

2jtanBd =1+ ————
Jtanf 5

(12.8.2)

Equating real and imaginary parts, we obtain the equivalent conditions:

sin(2Bl-01) _ 1 tan(2pl - 0)  (12.8.3)

cos(2Bl - 0p)= —|I't|, tanpd = 2|Iz| 2

The first of (12.8.3) may be solved resulting in two solutions for [; then, the second
equation may be solved for the corresponding values of d:

Bl = %GL + %acos(—ll‘LI) , Bd= atan(—%tan(ﬂil -0r)) (12.8.4)

The resulting values of I,d must be made positive by reducing them modulo A/2.
In the case of an open-circuited shunt stub, the first equation in (12.8.3) remains the
same, and in the second we must replace tan fd by — cot Bd. In the series connection
of a shorted stub, the impedances are additive at point a, resulting in the condition:

14T 14T
Za =21+ Zsub = Zo L'y jzotanBd = 7y = !

j =1
11 .y + jtan Bd

This may be solved in a similar fashion as Eq. (12.8.1). We summarize below the
solutions in the four cases of parallel or series connections with shorted or opened
stubs:

Bl = %[QL +acos(—|I'tl)], Bd= atan(—% tan(2B1 — 0;)), parallel/shorted
Bl = %[QL +acos(—|I'tl)], Bd= acot(% tan(2pBl — 01)), parallel/opened
Bl = %[QL +acos(|I'Ll)], Bd= acot(% tan(2Bl — 01)),  series/shorted
Bl = %[GL +acos(|I'Ll)], PBd= atan(—% tan(2Bl — 1)), series/opened

The MATLAB function stubl implements these equations. Its input is the normal-
ized load impedance, z; = Z1/Zy, and the desired type of stub. Its outputs are the dual
solutions for the lengths d, [, arranged in the rows of a 2x2 matrix d1. Its usage is as
follows:
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dl = stubl(zL,type);

% single stub tuner

The parameter type takes on the string values "ps’, 'po’, ’ss’, 'so’, for parallel/short,
parallel/open, series/short, series/open stubs.

Example 12.8.1: The load impedance Z; = 10 — 5j ohm is to be matched to a 50-ohm line. The
normalized load is z; = Z;/Zy = 0.2 — 0.1j. The MATLAB calls, d1=stub1(zL, type), re-
sult into the following solutions for the cases of parallel/short, parallel/open, series/short,
series/open stubs:

0.0806 0.4499 0.3306  0.4499 0.1694 0.3331 0.4194 0.3331
0.4194 0.0831 |’ | 0.1694 0.0831 |’ | 0.3306 0.1999 |’ | 0.0806 0.1999

Each row represents a possible solution for the electrical lengths d/A and I/A. We illustrate
below the solution details for the parallel/short case.

Given the load impedance z; = 0.2 — 0.1j, we calculate the reflection coefficient and put
it in polar form:
zp — 1

I = = —-0.6552-0.1379j = |It| =0.6695, 0O =—-2.9341rad
zr +1

Then, the solution of Eq. (12.8.4) is:

[0p = acos(—IIL])] = =[—2.9341 + acos(—0.6695) | = = [—2.9341 + 2.3044) |

N | =
N | =

1
Bl=

which gives the two solutions:

BI_Z_TrI_ ~0.3149rad | _ l—i -0.3149 | [ —0.0501A
T A | —2.6192rad Toom| —2.6192 | | —0.4169A

These may be brought into the interval [0,A/2] by adding enough multiples of A/2. The
built-in MATLAB function mod does just that. In this case, a single multiple of A /2 suffices,
resulting in:

;[ -0-0501 +0.50 ] _ T 0.44901 ;[ 28267 rad
=| —0.4160A +0.51 | = | 0.08314 | T P17 05224 rad

With these values of SI, we calculate the stub length d:

1 0.5064 rad 0.0806A
Bd = atan(~ tan(2p1 = 01)) = [ ~0.5064 rad] = [ ~0.0806A }

Shifting the second d by A/2, we finally find:

4| 00806 _[00806A ] g, [ 0.5064 rad
~ | —0.0806A +0.54 | | 0.4194A | = | 2.6351 rad

Next, we verify the matching condition. The load admittance is y; = 1/z; = 4 + 2j.
Propagating it to the left of the load by a distance I, we find for the two values of I and for
the corresponding values of d:
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~ yr+jtanl [ 1.0000 + 1.8028; y [ ~1.8028;
= T+ jyctanpl | 10000 1.8028) |* Youb = OB =1 goog;

For both solutions, the susceptance of y; is canceled by the susceptance of the stub, re-

sulting in the matched total normalized admittance y,; = y; + Ysup = 1. [}

Example 12.8.2: Match the antenna and feed line of Example 12.7.2 using a single shorted or
opened stub. Plot the corresponding matched reflection responses.

Solution: The normalized load impedance is z; = 38/50 = 0.76. The MATLAB function stubl

yields the following solutions for the lengths d, I, in the cases of parallel/short, paral-
lel/open, series/short, series/open stubs:

0.2072  0.3859 0.4572  0.3859 0.0428 0.3641 0.2928 0.3641
[ 0.2928 0.1141 ] ’ [ 0.0428 0.1141 ] ’ [ 0.4572  0.1359 ] ’ [ 0.2072  0.1359 ] ’
These numbers must be multiplied by Ay, the free-space wavelength corresponding to
the operating frequency of fo = 29 MHz. The resulting reflection responses |I'; (f)| at
the connection point a of the stub, corresponding to all the pairs of d,[ are shown in
Fig. 12.8.3. For example, in the parallel/short case, I'; is calculated by

1-ya 1—Tpe 2B fl fd
I, = = _ =27+ — =2 =
“= 15y, YaT Ty e Jjeotpd, B Ty pd T A

We note that different solutions can have very different bandwidths.
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Fig. 12.8.3 Reflection response of single stub matching solutions.

12.9 Balanced Stubs

In microstrip realizations of single-stub tuners, balanced stubs are often used to reduce
the transitions between the series and shunt segments. Fig. 12.9.1 depicts two identical
balanced stubs connected at opposite sides of the main line.
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short/open

\

main line  Zg Zy—>

/

short/open i

v

Fig. 12.9.1 Balanced stubs.

Because of the parallel connection, the total admittance of the stubs will be dou-
ble that of each leg, that is, Ypy = 2Ysup. A single unbalanced stub of length d can
be converted into an equivalent balanced stub of length dj by requiring that the two
configurations provide the same admittance. Depending on whether shorted or opened
stubs are used, we obtain the relationships between dj, and d:

2cotBdy =cotfd = dp= % acot (0.5 cot Bd) (shorted)

A\ (12.9.1)
2tanfBdy =tanBd = dp = P atan (0.5 tan Sd) (opened)
The microstrip realization of such a balanced stub is shown in Fig. 12.9.2. The figure

also shows the use of balanced stubs for quarter-wavelength transformers with a shunt
stub as discussed in Sec. 12.6.

; ;
Zy| d, dy |22
v

R
Zy

Fig. 12.9.2 Balanced microstrip single-stub and quarter-wavelength transformers.

If the shunt stub has length A/8 or 3A/8, then the impedance Z, of each leg must

be double that of the single-stub case. On the other hand, if the impedance Z> is fixed,
then the stub length dj of each leg may be calculated by Eq. (12.9.1).
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12.10 Double and Triple Stub Matching

Because the stub distance I from the load depends on the load impedance to be matched,
the single-stub tuner is inconvenient if several different load impedances are to be
matched, each requiring a different value for I.

The double-stub tuner, shown in Fig. 12.10.1, provides an alternative matching method

in which two stubs are used, one at the load and another at a fixed distance I from the
load, where typically, I = A/8. Only the stub lengths d1, d» need to be adjusted to match
the load impedance.

main line Z Zy—>

/
|
|

short/open |
|
|
'
v

Fig. 12.10.1 Double stub tuner.

The two stubs are connected in parallel to the main line and can be short- or open-
circuited. We discuss the matching conditions for the case of shorted stubs.

Let Y = 1/Z; = G + jBr be the load admittance, and define its normalized ver-
siony; = Y1 /Yy = gr + jbr, where g;, by are the normalized load conductance and
susceptance. At the connection points a, b, the total admittance is the sum of the wave
admittance of the line and the stub admittance:

yp + jtan Bl

1+ jyp tan pl ~JcotBdy

Ya =YI T Vstub,1 =

Yb =YL + Vsub,2 = gL +J(br — cot fd>)

The matching condition is y,; = 1, which gives rise to two equations that can be
solved for the unknown lengths d;,d. It is left as an exercise (see Problem 12.10) to
show that the solutions are given by:

1-btanBl — g;

cotfd, =by —b, cotfd; = g1 tan Bl

(12.10.1)

where

1
b = cot Bl + /g1 (Gmax — GL) » Gmax = 1 + cot® Bl = sin Bl (12.10.2)

Evidently, the condition for the existence of a real-valued b is that the load conduc-
tance gy be less than gmax, that is, gr < gmax- If this condition is not satisfied, the
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load cannot be matched with any stub lengths d;,d,. Stub separations near A/2, or
near zero, result in gmax = o0, but are not recommended because they have very narrow
bandwidths [873].

Assuming | < A/4, the condition g; < gmax can be turned around into a condition
for the maximum length [ that will admit a matching solution for the given load:

A 1
< A =
I < Imax e asin ( \/ﬁ) (maximum stub separation) (12.10.3)

If the existence condition is satisfied, then Eq. (12.10.2) results in two solutions for
b and, hence for, dy,d>. The lengths d;, d, must be reduced modulo A/2 to bring them
within the minimum interval [0, A/2].

If any of the stubs are open-circuited, the corresponding quantity cot fd; must be
replaced by — tan Bd; = cot(Bd; — 11/2).

The MATLAB function stub?2 implements the above design procedure. Its inputs are
the normalized load impedance z; = Z;/Zj, the stub separation I, and the stub types,
and its outputs are the two possible solutions for the di, d». Its usage is as follows:

d12 = stub2(zL,1,type);
di2 stub2(zL,1);
d1l2 = stub2(zL);

% double stub tuner

% equivalent to type='ss’
% equivalent to I = 1/8 and type='ss’

The parameter type takes on the strings values: 'ss’, ’so’, 'os’, '00’, for short/short,
short/open, open/short, open/open stubs. If the existence condition fails, the function
outputs the maximum separation I,y that will admit a solution.

A triple stub tuner, shown in Fig. 12.10.2, can match any load. The distances Iy, I»
between the stubs are fixed and only the stub lengths d;, d», d; are adjustable.

The first two stubs (from the left) can be thought of as a double-stub tuner. The
purpose of the third stub at the load is to ensure that the wave impedance seen by the
double-stub tuner satisfies the existence condition g; < gmax-

a I b b c

main line Zj Zy—>

/

i

|
short/open |

|

|

L

y

Fig. 12.10.2 Triple stub tuner.

The total admittance at the load point ¢, and its propagated version by distance I,
to point b are given by:

+ jtan Bl
yl7Yc J Bl

_ _ = iy — i - j 12.10.4
1+ jyetanfly’ Ye =YL+ Ysub3 = gL +jbr —jcotfds = gL +jb (12.10.4)
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where b = by — cot Bd3. The corresponding conductance is:

gr (1 + tan® Bly)
(btan Bl, — 1)2+g? tan? I,
The first two stubs see the effective load y;. The double-stub problem will have a
solution provided g; < gmax,1 = 1/ sin® BI;. The length d3 of the third stub is adjusted to
ensure this condition. To parametrize the possible solutions, we introduce a “smallness”
parameter e < 1 such that g; = egmax,1. This gives the existence condition:

g =Re(y))= (12.10.5)

3 g (1 + tan® Bl,)
" (btanpBl, — 1)2+g3 tan? Bl,

gi = €Fmax,1

which can be rewritten in the form:

(b — cot B12)2= gL (gmax,Z - egmax,lgL) = g%gmax,l (emax — €)

where we defined gmax2 = 1 + cot? Bl = 1/sin? Bl and emax = Imax.2/ (Grgmax1). If
emax < 1, we may replace e by the minimum of the chosen e and epy. Butif epax > 1,
we just use the chosen e. In other words, we replace the above condition with:

(b — cot 312)2: g%gmax,] (emax - emin) s €min = min(e, emax) (12106)

It corresponds to setting g; = €mingmax,1- Solving Eq. (12.10.6) for cot fd; gives the
two solutions:

cotfds =by —b, b=cotfl = gL\/gmax,l (émax — €min) (12.10.7)

For each of the two values of d3, there will be a feasible solution to the double-stub
problem, which will generate two possible solutions for d;,d>. Thus, there will be a
total of four triples dq, d>, ds that will satisfy the matching conditions. Each stub can
be shorted or opened, resulting into eight possible choices for the stub triples.

The MATLAB function stub3 implements the above design procedure. It generates
a 4x3 matrix of solutions and its usage is:

di23 stub3(zL,11,12,type,e);
d123 = stub3(zL,11,12,type);
di123 stub3(zL,11,12);

d123 = stub3(zl);

% triple stub tuner

% equivalent toe = 0.9

% equivalent to e = 0.9, type="sss’

% equivalent to e = 0.9, type="sss’, [} =1 = 1/8

where type takes on one of the eight possible string values, defining whether the first,
second, or third stubs are short- or open-circuited: ’sss’, ’sso’, 'sos’, 'so0’, 'o0ss’, '0s0’,
’00s’, ’000’.

12.11 L-Section Lumped Reactive Matching Networks

Impedance matching by stubs or series transmission line segments is appropriate at
higher frequencies, such as microwave frequencies. At lower RF frequencies, lumped-
parameter circuit elements may be used to construct a matching network. Here, we
discuss L-section, I1-section, and T-section matching networks.
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The L-section matching network shown in Fig. 12.11.1 uses only reactive elements
(inductors or capacitors) to conjugately match any load impedance Z; to any generator
impedance Z;. The use of reactive elements minimizes power losses in the matching

network.
§

normal L-section (Rg > R;y)

reversed L-section (Rg < Rp)
Fig. 12.11.1 L[-section reactive conjugate matching network.

L-section networks are used to match the input and output impedances of amplifier
circuits [1109-1117] and also to match transmitters to feed lines [44,45,1071-1078].

An arbitrary load impedance may be matched by a normal L-section, or if that is
not possible, by a reversed L-section. Sometimes both normal and reversed types are
possible. We derive below the conditions for the existence of a matching solution of a
particular type.

The inputs to the design procedure are the complex load and generator impedances
Z; = R;p + jX; and Zg = Rg + jXg. The outputs are the reactances X, X,. For
either type, the matching network transforms the load impedance Z; into the complex
conjugate of the generator impedance, that is,

(conjugate match) (12.11.1)

where Zj, is the input impedance looking into the L-section:

_ Zi(Za+ 7))
Zin = 721 7t 2, (normal)
7.7 (12.11.2)
Zin =122+ 7t 720 1+ éL (reversed)

with Z; = jX; and Z, = jX,. Inserting Egs. (12.11.2) into the condition (12.11.1) and
equating the real and imaginary parts of the two sides, we obtain a system of equations
for X, X, with solutions for the two types:

Xlzm XLiRLQ
R¢ 1 Xl:T
R “L
R; Re

Xo = - (XL £RQ) (mormal), | x, — — (X, =+ RcQ) (reversed)

Rg X¢ R X2
Q= |- -1+ = k14 L
R, RGR; Q Rg RGR;

(12.11.3)
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If the load and generator impedances are both resistive, so that X; = 0 and X¢ = 0,
the above solutions take the particularly simple forms:

R R
Xi = ia X1 = iaL
X, =FR1Q (normal), | X2 = FR¢Q (reversed) (12.11.4)

R¢ Ry
SN | S Ea
Q R, Q Re

We note that the reversed solution is obtained from the normal one by exchanging
Z1 with Zg. Both solution types assume that Rg # Rr. If Rg = Ry, then for either type,
we have the solution:

X; =00, Xo=-(X;+Xg) (12.11.5)

Thus, X is open-circuited and X» is such that X, + X; = —X. The Q quantities
play the role of series impedance Q-factors. Indeed, the X, equations in all cases imply
that Q is equal to the ratio of the total series reactance by the corresponding series
resistance, that is, (X, + X;)/Ry or (X, + X¢) /Rg.

The conditions for real-valued solutions for X, X» are that the Q factorsin (12.11.3)
and (12.11.4) be real-valued or that the quantities under their square roots be non-
negative. When R; # Rg, itis straightforward to verify that this happens in the following
four mutually exclusive cases:

existence conditions | L-section types |
Rg >Ry, |X1|=+R.(Rg—Ry) |normaland reversed
Rg >Ry, |X1l <+RL(Rg—Ry) |normalonly (12.11.6)
Rg <Ry, |Xgl=+Rg(Rr—Rg) |normal and reversed

Rg <Rp, |Xgl <+Rg(Rp —Rg) | reversed only

It is evident that a solution of one or the other type always exists. When R; > R
a normal section always exists, and when R; < Ry a reversed one exists. The MATLAB
function Tmatch implements Eqgs. (12.11.3). Its usage is as follows:

X12 = Tmatch(ZG,ZL,type);

% L-section matching

where type takes on the string values ’n’ or 'r’ for a normal or reversed L-section.
The two possible solutions for X7, X, are returned in the rows of the 2x2 matrix X,.

Example 12.11.1: Design an L-section matching network for the conjugate match of the load
impedance Z; = 100+50j ohm to the generator Z; = 50+ 10j ohm at 500 MHz. Determine
the capacitance or inductance values for the matching network.

Solution: The given impedances satisfy the last of the four conditions of Eq. (12.11.6). Therefore,
only a reversed L-section will exist. Its two solutions are:
—72.4745 51.2372

172.4745 —71.2372
X2 = Imatch (50 + 105,100 + 50j,’r’) = [ ]
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The first solution has a capacitive X, = —71.2372 and an inductive X; = 172.4745. Setting
X, = 1/jwC and X, = jwL, where w = 21rf = 21500 - 10° rad/sec, we determine the
corresponding values of C and L to be C = 4.47 pF and L = 54.90 nH.

The second solution has an inductive X, = 51.2372 and a capacitive X; = —72.4745.
Setting X» = jwL and X; = 1/jwC, we find in this case, L = 16.3 nH and C = 4.39 pF. Of
the two solutions, the one with the smaller values is generally preferred. O

12.12 Pi-Section Lumped Reactive Matching Networks

Although the L-section network can match an arbitrary load to an arbitrary source,
its bandwidth and Q-factor are fixed uniquely by the values of the load and source
impedances through Egs. (12.11.3).

The I1-section network, shown together with its T-section equivalent in Fig. 12.12.1,
has an extra degree of freedom that allows one to control the bandwidth of the match.
In particular, the bandwidth can be made as narrow as desired.

T-section
Fig. 12.12.1 [II- and T-section matching networks.
The I1, T networks (also called A, Y networks) can be transformed into each other

by the following standard impedance transformations, which are cyclic permutations of
each other:

VAYA VAYA VAVA
Z, = — = — = =
a U Zp U Ze U U=7Z1+7Z>+73
(12.12.1)
Z_7V Z_7V Z—fv V=2ZZpy+ZpZe +Z:7Z
I—Za; Z—st S—ZC, = 4atb b4c cta

Because Z,, Z», Z3 are purely reactive, Z, = jXi, Z» = jX», Z3 = jX3, so will be
ZayZp, Ze,With Z, = jX g, Zp = jXp, Zc = jXe.

The MATLAB functions pi2t and t2pi transform between the two parameter sets.
The function pi2t takes in the array of three values Zy»3 = [Z;, Z», Z3] and outputs
Zave = [Za, Zp, Z:], and t2pi does the reverse. Their usage is:
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Zabc
7123

% I1 to T transformation

pi2t(Z123);
t2pi(Zabc);

% T to IT transformation

One of the advantages of T networks is that often they result in more practical values
for the circuit elements; however, they tend to be more lossy [44,45].

Here we discuss only the design of the IT matching network. It can be transformed
into a T network if so desired. Fig. 12.12.2 shows the design procedure, in which the
IT network can be thought of as two L-sections arranged back to back, by splitting the
series reactance X, into two parts, X, = X4 + Xs.

L-section

effective load

Fig. 12.12.2 Equivalent L-section networks.

An additional degree of freedom is introduced into the design by an intermediate
reference impedance, say Z = R + jX, such that looking into the right L-section the
input impedance is Z, and looking into the left L-section, it is Z*.

Denoting the L-section impedances by Z; = jX;, Z4 = jX4 and Z3 = jX3, Z5 = j X5,
we have the conditions:

AV 7% Z3Z1

Zleft = Z4 + Zl T ZG = y Zright = ZS + =7 (12.12.2)

Z3+7p

As shown in Fig. 12.12.2, the right L-section and the load can be replaced by the
effective load impedance Zjgn = Z. Because Z; and Z4 are purely reactive, their con-
jugates will be Zf = —Z; and Z} = —Z,. It then follows that the first of Egs. (12.12.2)
can be rewritten as the equivalent condition:

_ Z1(Zy+ Z) _

Z. - — T =
N2+ Zs+ 7

ZE (12.12.3)
This is precisely the desired conjugate matching condition that must be satisfied by
the network (as terminated by the effective load Z.)
Eqg. (12.12.3) can be interpreted as the result of matching the source Z; to the load
Z with a normal L-section. An equivalent point of view is to interpreted the first of
Egs. (12.12.2) as the result of matching the source Z to the load Z; using a reversed
L-section.
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Similarly, the second of Egs. (12.12.2) is the result of matching the source Z* to the
load Z; (because the input impedance looking into the right section is then (Z*)*= Z.)
Thus, the reactances of the two L-sections can be obtained by the two successive calls
to Tmatch:

X14 = [X1,X4]=1match(Zg, Z, ’n’)=1lmatch(Z,Zg, 'r’)

(12.12.4)
X35 = [X3,X5]=Imatch(Z*,Z;, "r")

In order for Eqgs. (12.12.4) to always have a solution, the resistive part of Z must
satisfy the conditions (12.11.6). Thus, we must choose R < R; and R < Rj, or equiva-
lently:

R < Ruin Rmin = min(R¢, Ry) (12.12.5)

Otherwise, Z is arbitrary. For design purposes, the nominal Q factors of the left and
right sections can be taken to be the quantities:

_ |Re _ _ R
Q=17 ~1. Q=47 (12.12.6)

The maximum of the two is the one with the maximum value of R or Ry, that is,

Q=,/—F—-1], Rumax = max(Rg,Ry) (12.12.7)

This Q-factor can be thought of as a parameter that controls the bandwidth. Given
a value of Q, the corresponding R is obtained by:

Rmax
=0 12.12.8
Q% +1 ( )

For later reference, we may express Qg, Qr in terms of Q as follows:

RR—G(Q2 +1)-1, Q= W (12.12.9)

Clearly, one or the other of Q;, Q¢ is equal to Q. We note also that Q may not be
less than the value Qi achievable by a single L-section match. This follows from the
equivalent conditions:

R
Q>Qmn © R<Rmin|, Qmn= = (12.12.10)

R min

The MATLAB function pmatch implements the design equations (12.12.4) and then
constructs X» = X4+ X5. Because there are two solutions for X4 and two for X5, we can
add them in four different ways, leading to four possible solutions for the reactances of
the IT network.

The inputs to pmatch are the impedances Zg, Z; and the reference impedance Z,
which must satisfy the condition (12.12.10). The output is a 4X3 matrix X;23 whose
rows are the different solutions for X, X», X3:
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X123 = pmatch(ZG,ZL,Z); % IT matching network design

The analytical form of the solutions can be obtained easily by applying Egs. (12.11.3)
to the two cases of Eq. (12.12.4). In particular, if the load and generator impedances are
real-valued, we obtain from (12.11.4) the following simple analytical expressions:

R R + R
Xy = —ecRe x, - Bmal€cQereaQ) R (12.12.11)

Q¢ Q*+1 ' Qr
where €¢, € are =1, Qg, Q1 are given in terms of Q by Eq. (12.12.9), and either Q is
given or it can be computed from Eq. (12.12.7). The choice € = €; = 1 is made often,
corresponding to capacitive X, X3 and inductive X, [44,1076].

As emphasized by Wingfield [44,1076], the definition of Q as the maximum of Q
and Q¢ underestimates the total Q-factor of the network. A more appropriate definition
is the sum Q, = Q1 + Qg.

An alternative set of design equations, whose input is Q,, is obtained as follows.
Given Q,, we solve for the reference resistance R by requiring:

Re |, [Ru

-1
R R

Qo=Qc+QL =

This gives the solution for R, and hence for Qg, Q1:

R- (Rg —Rp)?
(RG + R1) Q3 — 2Qo\|RGR1Q3 — (Rg — Rp)?
0o - Koo~ VRGRLQ3 ~ (Rg — Rp)? 12.12.12)
R¢ - R
R1Qo —\RGR1Q3 — (R — Rp)?
Q= R, —R
L G

Then, construct the IT reactances from:

R R
X, = —eGQ—i, Xo = R(egQq +€.Q1), X3 = —eL@L (12.12.13)

The only requirement is that Q, be greater than Qun. Then, it can be verified that

Egs. (12.12.12) will always result in positive values for R, Q¢, and Q. More simply, the
value of R may be used as an input to the function pmatch.

Example 12.12.1: We repeat Example 12.11.1 using a IT network. Because Z; = 50 + 10j and
Z; = 100 + 50j, we arbitrarily choose Z = 20 + 40j, which satisfies R < min(R¢, Ry ). The
MATLAB function pmatch produces the solutions:

48.8304 —71.1240 69.7822
—35.4970 71.1240 —44.7822
48.8304 20.5275 —44.7822
—35.4970 —20.5275 69.7822

X123 = [X1, X0, X3]= pmatch(Z¢, Z1,Z) =
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All values are in ohms and the positive ones are inductive while the negatives ones, capac-

itive. To see how these numbers arise, we consider the solutions of the two L-sections of
Fig. 12.12.2:

e 48.8304 —65.2982

X4 = Imatch(Zg, Z, *n") = [ ~35.4970 714.7018]

69.7822 —5.8258
X35 = Ilmatch(Z*,Z;, 'r’) = [ ]

—44.7822 85.825

where X4 and X5 are the second columns. The four possible ways of adding the entries
of X, and X give rise to the four values of X». It is easily verified that each of the four
solutions satisfy Egs. (12.12.2) and (12.12.3). ]

Example 12.12.2: Itis desired to match a 200 ohm load to a 50 ohm source at 500 MHz. Design
L-section and I1-section matching networks and compare their bandwidths.

Solution: Because R < Ry and X¢ = 0, only a reversed L-section will exist. Its reactances are
computed from:

o 115.4701 —86.6025

X1z = [X1, X2 ]= Imatch (50, 200, *r”) = [—115.4701 86.6025]

The corresponding minimum Q factor is Qmin = +/200/50 — 1 = 1.73. Next, we design a
IT section with a Q factor of 5. The required reference resistance R can be calculated from
Eq. (12.12.8):

200
5241

R = 7.6923 ohm

The reactances of the IT matching section are then:

21.3201 -56.5016 40
—21.3201 56.5016 —40
21.3201 20.4215 —40
—21.3201 —20.4215 40

X123 = [ X1, X», X3]= pmatch (50, 200, 7.6923) =

The IT to T transformation gives the reactances of the T-network:

—469.0416 176.9861 —250
469.0416 -176.9861 250
—469.0416 —489.6805 250
469.0416 489.6805 —250

Xabe = [Xa, Xp, Xc]= pi2t(X123) =

If we increase, the Q to 15, the resulting reference resistance becomes R = 0.885 ohm,
resulting in the reactances:

6.7116 —19.8671 13.3333
-6.7116 19.8671 —13.3333
6.7116 6.6816 —13.3333
-6.7116 —6.6816 13.3333

X123 = [X],XZ,X3]: pmatch(50,200,0.885):
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Q=5 Q=15
1 1
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Fig. 12.12.3 Comparison of L-section and II-section matching.

Fig. 12.12.3 shows the plot of the input reflection coefficient, that is, the quantity Iy, =
(Zin — ZE) 1 (Zin + Zg) versus frequency.

If a reactance X; is positive, it represents an inductance with a frequency dependence of
Z;i = jXif/fo, where fo = 500 MHz is the frequency of the match. If X; is negative, it
represents a capacitance with a frequency dependence of Z; = jX;fo/f.

The graphs display the two solutions of the L-match, but only the first two solutions of
the IT match. The narrowing of the bandwidth with increasing Q is evident. m]

The IT network achieves a narrower bandwidth over a single L-section network. In
order to achieve a wider bandwidth, one may use a double L-section network [1109], as
shown in Fig. 12.12.4.

5

X3 RG<R<Rp

> jX5
X3 RG>R>R,

Fig. 12.12.4 Double L-section networks.

The two L-sections are either both reversed or both normal. The design is similar to
Eq. (12.12.4). In particular, if R; < R < Rj, we have:
X14 = [X1,X4]=lmatch(Zg, Z, ’r’)

(12.12.14)
X35 = [X3,X5]= Imatch(Z*,Z;, ’r’)
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and if Rg > R > R;:

X14 = [X1,X4]=Imatch(Z¢g, Z, 'n”)

(12.12.15)
X35 = [X3,Xs5]=Imatch(Z*,Z;, 'n")

The widest bandwidth (corresponding to the smallest Q) is obtained by selecting
R = \/JRGR;. For example, consider the case Rz < R < Ry. Then, the corresponding
left and right Q factors will be:

_ | R _ R
Q¢ = Re 1, QL= R 1

Both satisfy Qg < Qmin and Q; < Qmin. Because we always choose Q to be the
maximum of Qg, Qp, the optimum Q will correspond to that R that results in Qqpr =
min(max(Qg¢, Q1) ). It can be verified easily that Ropt = v/R¢Ry and

R R
Qopt = QL,opt = QG,opt = \/ Ro(]zt -1= \/Kit -1

These results follow from the inequalities:

Q6 < Qopt = Qr, if Rg <R <Ry
Qr < Qopt < Qg, if Ropt <R <Ry

Example 12.12.3: Use a double L-section to widen the bandwidth of the single L-section of
Example 12.12.2.

Solution: The Q-factor of the single section is Qmin = +/200/500 — 1 = 1.73. The optimum ref-
erence resistor is Rop = /50-200 = 100 ohm and the corresponding minimized optimum

Qopt =1
) Ry = 100
— double L
0.81 --- single L
- - single L
— 06
S
E
|
— 0.4

o0 50 500 550 600
f (MHz)

Fig. 12.12.5 Comparison of single and double L-section networks.

The reactances of the single L-section were given in Example 12.12.2. The reactances of
the two sections of the double L-sections are calculated by the two calls to Tmatch:
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oy 100 =50
X4 = [Xl,X4]=lmatch(50,100, r’)= |:_100 50:|

oy 200 -100
X35 = [X3,X5]= Ilmatch (100,200, ’r’)= [ ~200 100]

The corresponding input reflection coefficients are plotted in Fig. 12.12.5. As in the design
of the IT network, the dual solutions of each L-section can be paired in four different ways.
But, for the above optimum value of R, the four solutions have virtually identical responses.
There is some widening of the bandwidth, but not by much. m|

12.13 Reversed Matching Networks

The types of lossless matching networks that we considered in this chapter satisfy the
property that if a network is designed to transform a load impedance Zj into an input
impedance Z,, then the reversed (i.e., flipped left-right) network will transform the load
Z}% into the input Zj;. This is illustrated in Fig. 12.13.1.

a b b
—0— o —0—
R reversed
Zg—> matching Zg — | matching
network network
—0— o —0—
a b b

Fig. 12.13.1 Forward and reversed matching networks.

The losslessness assumption is essential. This property is satisfied only by matching
networks built from segments of lossless transmission lines, such as stub matching or
quarter-wave transformers, and by the L-, I1-, and T-section reactive networks. Some
examples are shown in Fig. 12.13.2.

a [ b
Za—>/ 7] Zﬁ—»
b

a b
4

b

stub

Fig. 12.13.2 Examples of reversed matching networks.
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Working with admittances, we find for the stub example that the input and load
admittances must be related as follows for the forward and reverse networks:
Yy +jY, tanBl (Y; + Ystub)+jY1 tanBI

Yo=Y +Y Y=Y 12.13.1
a stub 1 Y, +th tan Bl ( )

b 1Yl +J(Y4 + Ygup) tan pl

where Yqup = —jY2 cot fd for a shorted parallel stub, and Ygu, = jY» tan Bd for an
opened one. The equivalence of the two equations in (12.13.1) is a direct consequence
of the fact that Y, is purely reactive and therefore satisfies Y;‘mb = —Ysuwp. Indeed,
solving the left equation for Y}, and conjugating the answer gives:

(Ya — Ysup) —jY1 tan Bl (Y - Yiw) +JY1 tan fl

Yo=Y - Y=Y -

"7y~ j(Ya — Yeup) tan Bl b YY)+ j(YE - Vi) tan Bl
which is equivalent to the right equation (12.13.1) because YS*tub = —Ygwp. Similarly, for
the L-section example we find the conditions for the forward and reversed networks:

VAVAS
- Lzt Zn) Zf = 2, + 1o (12.13.2)

ST Z 4 Zo + 7y Zi+ 274

where Z; = jX; and Z» = jX». The equivalence of Eqgs. (12.13.2) follows again from the
reactive conditions Z; = —Z; and Z§ = —Z».

As we will see in Chap. 13, the reversing property is useful in designing the input
and output matching networks of two-port networks, such as microwave amplifiers,
connected to a generator and load with standardized impedance values such as Zy = 50
ohm. This is shown in Fig. 12.13.3.

input two-port output
matching | «— Zg network Z, —> matching
network S network
reversed reversed
f input output *
Z5 mput | 4 — 5 Z
G matching Zo Zo matching L
network | _ | network

Fig. 12.13.3 Designing input and output matching networks for a two-port.

To maximize the two-port’s gain or to minimize its noise figure, the two-port is re-
quired to be connected to certain optimum values of the generator and load impedances
Z¢,Z1. The output matching network must transform the actual load Z; into the de-
sired value Z;. Similarly, the input matching network must transform Z, into Zg; so
that the two-port sees Z as the effective generator impedance.

In order to use the matching methods of the present chapter, it is more convenient
first to design the reversed matching networks transforming a load Z} (or Z() into
the standardized impedance Z, as shown in Fig. 12.13.3. Then the designed reversed
networks may be reversed to obtain the actual matching networks. Several such design
examples will be presented in Chap. 13.
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12.14 Problems

12.1

12.2

12.3

12.4

A one-section quarter-wavelength transformer matching a resistive load Z; to aline Z, must
have characteristic impedance Z; = /ZyZ;. Show that the reflection response I'; into the
main line (see Fig. 12.3.1) is given as a function of frequency by:

p(1 + e 29%) VZ1 —Zy f
=" -5, p=-"F7—7, 0=,
1+ p2e=%0 VZir +Zo 2 fo

where f{ is the frequency at which the transformer length is a quarter wavelength. Show
that the magnitude-squared of I'y is given by:
e?cos? 8 2|p|

Iri?= , e=
Il 1+ e2cos?d 1-p?

Show that the bandwidth (about f;) over which the voltage standing-wave ratio on the line
remains less than S is given by:

(mAf\ (-1 -p?)
(1) 55"

Design a one-section quarter-wavelength transformer that will match a 200-ohm load to a
50-ohm line at 100 MHz. Determine the impedance Z; and the bandwidth Af over which
the SWR on the line remains less than S = 1.2.

A transmission line with characteristic impedance Z, = 100 Q is terminated at a load
impedance Z; = 150 + j50 Q. What percentage of the incident power is reflected back
into the line?

In order to make the load reflectionless, a short-circuited stub of length [; and impedance
also equal to Zj is inserted in parallel at a distance I, from the load. What are the smallest
values of the lengths [; and I, in units of the wavelength A that make the load reflectionless?

Aloss-free line of impedance Z is terminated at aload Z; = Zy + j X, whose resistive part is
matched to the line. To properly match the line, a short-circuited stub is connected across
the main line at a distance of A /4 from the load, as shown below. The stub has characteristic
impedance Zj.

Find an equation that determines the length I of the stub in order that there be no reflected
waves into the main line. What is the length I (in wavelengths A) when X = Z;? When
X = Zy//3?

Z, — A4 —

A transmission line with characteristic impedance Z, must be matched to a purely resistive
load Z;. A segment of length I, of another line of characteristic impedance Z, is inserted at
a distance Iy from the load, as shown in Fig. 12.7.1 (with Z, = Zy and I, = I,.)

Take Zy = 50, Z; = 100, Z; = 80 Q and let By and B; be the wavenumbers within the
segments Iy and [;. Determine the values of the quantities cot(f;1;) and cot(Boly) that
would guarantee matching. Show that the widest range of resistive loads Z; that can be
matched using the given values of Z, and Z; is: 12.5 Q < Z; < 200 Q.
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12.6

12.8

12.9

12.10
12.11

12.12

12.13

12.14

12.15

12.16
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A transmission line with resistive impedance Z; is terminated at a load impedance Z; =
R + jX. Derive an expression, in terms of Zy, R, X, for the proportion of the incident power
that is reflected back into the line.

In order to make the load reflectionless, a short-circuited stub of length I; and impedance Z,
is inserted at a distance I, from the load. Derive expressions for the smallest values of the
lengths I, and [, in terms of the wavelength A and Z,, R, X, that make the load reflectionless.

It is required to match a lossless transmission line Z, to a load Z;. To this end, a quarter-
wavelength transformer is connected at a distance I from the load, as shown below. Let Aq
and A be the operating wavelengths of the line and the transformer segment.

Z, :] Z

My

Z Z,

Assume Z, = 50 Q. Verify that the required length I, that will match the complex load
Zp =40+ 30j Qisly = A/8. What is the value of Z; in this case?

It is required to match a lossless transmission line of impedance Z, = 75 Q to the complex
load Z; = 60 + 45j Q. To this end, a quarter-wavelength transformer is connected at a
distance Iy from the load, as shown in the previous problem. Let Ay and A be the operating
wavelengths of the line and the transformer segment.

What is the required length I, in units of A(? What is the characteristic impedance Z; of the
transformer segment?

Show that the solution of the one-section series impedance transformer shown in Fig. 12.7.3
is given by Eq. (12.7.9), provided that either of the inequalities (12.7.10) is satisfied.

Show that the solution to the double-stub tuner is given by Eq. (12.10.1) and (12.10.2).

Match load impedance Z; = 10 — 5j ohm of Example 12.8.1 to a 50-ohm line using a double-
stub tuner with stub separation of I = A/16. Show that a double-stub tuner with separation
of I = A/8 cannot match this load.

Match the antenna and feed line of Example 12.7.2 using a double stub tuner with stub
separation of I = A/8. Plot the corresponding matched reflection responses. Repeat when |
is near A/2, say, I = 0.495 A, and compare the resulting notch bandwidths.

Show that the load impedance of Problem 12.11 can be matched with a triple-stub tuner
using shorted stubs with separations of I; = I, = A/8, shorted stubs. Use the smallness
parameter values of e = 0.9 and e = 0.1.

Match the antenna and feed line of Example 12.7.2 using a stub tuner and plot the corre-
sponding matched reflection responses. Use shorted stubs with separations I; = I, = A/8,
and the two smallness parameters e = 0.9 and e = 0.7.

Design an L-section matching network that matches the complex load impedance Z; =
30 + 40j ohm to a 50-ohm transmission line. Verify that both a normal and a reversed
L-section can be used.

It is desired to match a line with characteristic impedance Z, to a complex load Z; = R} +
JjX1. In order to make the load reflectionless, a quarter-wavelength section of impedance Z;
is inserted between the main line and the load, and a A/8 or 3A/8 short-circuited stub of
impedance Z; is inserted in parallel at the end of the line, as shown below.
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Al4
T T
main line  Z A
T
shorted
stub d=A/8, or, 3A/8

a. Show that the section characteristic impedances must be chosen as:

R

Zy =+\ZoRL, Z»=Z, X,

Such segments are easily implemented with microstrip lines.
b. Depending on the sign of X, decide when one should use a A/8 or a 3A/8 stub.

c. The above scheme works if both R; and X are non-zero. What should we doif Ry # 0
and X; = 0? What should we do if R; = 0 and X; # 0?

d. Repeat the above questions if an open-circuited stub is used.
12.17 A 50-ohm transmission line is terminated at the load impedance:
Z; =40+ 80j Q

a. In order to make the load reflectionless, a quarter-wavelength transformer section of
impedance Z; is inserted between the line and the load, as show below, and a A/8 or
3A/8 short-circuited stub of impedance Z; is inserted in parallel with the load.

A/4

main line Z

d=A/8,or, 3A/8
shorted

Determine the characteristic impedances Z; and Z, and whether the parallel stub
should have length A/8 or 3A/8.

b. In the general case of a shorted stub, show that the matching conditions are equivalent

to the following relationship among the quantities Zy, Z;, Z1, Z»:
202375 £ )2, 7}
IL=—"rp 4

Z575 + Z3

where Zy, Z,, Z, are assumed to be lossless. Determine which + sign corresponds to
A/8 or 3A/8 stub length.

616 12. Impedance Matching

12.18 An FM antenna operating at a carrier frequency of f; = 100 MHz has input impedance of
Z; = 112.5 ohm. The antenna is to be matched to a Zy = 50 ohm feed line with a quarter-
wavelength transformer inserted as shown below.

A/4

feed line  Zo : Z, 71| antenna

I

1 2

a. Determine the quarter-wavelength segment’s impedance Z;.

b. Show that the reflection response back into the feed line at the left end of the quarter-
wavelength transformer is given as a function of frequency by:

p(1+e %% _nf i =2

Fl (f): 1+,02(—l’72j‘S ’ B Zf()’ p= Z1 + Z()

c. Plot |y (f) ] versus f in the range 0 < f < 200 MHz.

d. Using part (b), show that the bandwidth Af,; about the carrier frequency [y that corre-
sponds to a prescribed value |I';|? of the reflection response is given by:

_2fy 2p2 = |Fal*(1 + p*)
Afa = = ac ( 202 (1~ 1[a?)

e. Calculate this bandwidth for the value [I';] = 0.1 and determine the left and right
bandedge frequencies in MHz, and place them on the above graph of |I'; (f)].

f. The FCC stipulates that FM radio stations operate within a 200 kHz bandwidth about
their carrier frequency. What is the maximum value of the reflection response |I';| for
such a bandwidth?

12.19 The same FM antenna is to be matched using a single-stub tuner as shown below, using an
open-ended stub.

feed line  Zo Zg—>

(]

Zo

open d

a. Determine the segment lengths d, ! (in cm) assuming the segments have chacteristic
impedance of Zy = 50 ohm and that the velocity factor on all the lines is 0.8.

b. Calculate and plot versus frequency the reflection response |I'; (f) | into the feed line,
at the terminals a shown in the figure.



