Apparently "Vintage" HOW MREans
 "What I Once Used"

- Part 1: How Vintage Computing Devices Benefitted Me
- Part 2: The Amazing Curta!
- Part 3: Show and Tell

Sears Pocket Adder (1972)

 subtracters
$3^{31 / 2 \times 5 \times 3} 1 / 2$ inches. Move levers to add, and subtract. Totals to $9,999,999$. Plastic body. Japan 3 H 5854 --Shipping weight I lb. 1 ou. 55.88
> (4 and 5) Pocket size. Add on one side, subtract on the other. Slip into pocket or purse. Case and stylus included. Aluminum. From Wet Germany.
> 4 Adds to $9,999.99 .21 / 205$ inches.
> 3 H 5816 -Shipping weight 6 ounces. $\$ 2.49$
> Adds to $9,999,999.99 .33 / 4 \times 5$ inches.
3 H 5817 -Shipping weight 7 ounces.
> .. $\$ 3.39$

Imaginel An Eleotrio Adding Machine
specially designed for home use that offers all this:

- Lits 7 columns, fotale 8
- Adds, subtracts, mulsplies, italis and subthotals - Provides a printed tape for your recordo - Complele with cord, tepe, roben. dust cover and inatructions

All for only ${ }^{3} 6395$

 2 mer corritacentic - w-ar n

 christmas.musetechnical.com

Sears Pocket Adder (1972)

Sears Pocket Adder (1972)

- Created from stamped sheet metal
- Physical "carry" mechanism

Pocket Calculator

Sears Pocket Adder (1972)

Sears Pocket Adder (1972)

Use these portable Electronic 8-digit Calculators

Sears 8 - Pocket Electronic Calculator (1975)

-"dual-powered"—use anywhere

- batteries
- 110-120-v., 60-c. AC
- "silently add, subtract, multiply and divide—even give negative answers"

Sears 8 - Pocket Electronic Calculator (1975)

- Easy to play with numbers
- 12345678×8
- $1 \div 7$
- $1 \div 9$
- $1 \div 6$
- $12121212 \div 3$

Sears $\mathbf{8}$

Radio Shack EC-420

Low-Cost "Slide Rule" Calculator (1977)

- Calculator wars had begun!
- U.S. vs. Japan
- Inexpensive
- Vacuum Fluorescent Displays
- Lower power

Radio Shack EC-420

Low-Cost "Slide Rule" Calculator (1977)

- "Special 'Pi' Key"
- Percent, Squares, Square Roots, Reciprocals
- Good for highschool science classes

Low-Cost "Slide-Rule"

- With Special "Pi" Key
- Does Percents, Squares, Square Roots, Reciprocals

> Radio Shack EC-420. Fully addressable memory with separate register, sign change, more. $6 \times 3 \times 7 / 8^{\prime \prime}$. Uses 2 "AA" cells (included) or AC with optional adapter. With fitted pouch. 65-636 . . .19.95 AC Adapter. U.L. listed. 65-735

Radio Shack EC-420 Low-Cost "Slide Rule" Calculator (1977)

- Easy to play with numbers
-. $9 x^{2} x^{2}$
-. 9 vx vx vx vx vx vx vx vx vx vx
-1.1 vx vx vx vx vx vx vx vx vx vx
- $7^{1 / x^{1} / x}$
- $9^{1 / x} x^{1 / x}$
- $6 \frac{1}{1 / x} 1 / x$

Radı Shack

C	CE	+/-		
$\sqrt{ }$	$1 / \mathrm{x}$	X^{2}	π	\%
7	8	9	\div	$\overline{C M}$
4	5	6	\times	RM
1	2	3	-	M-
\bigcirc	-	$=$	+	M+

Dad's Sterling Slide Rule (1977)

A. PRECISION

- Knew that he had it, but I had no interest until . . .

Dad's Slide Rule

- Was browsing through the high-school library
- Dewey Decimal "500" series = mathematics
- A book about slide rules?
- by Isaac Asimov?
- Checked it out (first person to do so)

Dad's Slide Rule

- Isaac Asimov taught me about logarithms
- Slide rules add and subtract logarithms

Hewlett-Packard HP-29C Scientific Calculator (1979)

- Somehow convinced my parents to buy me a tool for a working engineer
C. HP-29C, what a memory. Even when turned off, the calculator remembers your program. keeping it ready for use until cleared or rewritten Orig 19500. Now 175.00.
our collection of hewlett-packard

hewiett-pockard closeout. sove $30 \% 10.50 \%$
 Colcuotors, Second Floor

Hewlett-Packard HP-29C Scientific Calculator (1979)

Continuous Mlemory

- 98 programming instructions
- Similar to computer assembly language
- Has log, $10^{\mathrm{x}}, \mathrm{In}, \mathrm{e}^{\mathrm{x}}$
- Has time conversions $\mathrm{H} \rightleftarrows \mathrm{H} . \mathrm{MS}$
- Rectangular \rightleftarrows Polar Conversions

Hewlett-Packard HP-29C Scientific Calculator (1979)

- But even better, an . . .

Hewlett-Packard HP-29C Scientific Calculator (1979)

- Exposed to concepts that normally I would not have been exposed to

Hewlett-Packard HP-29C Scientific Calculator (1979)

- "Curve Fitting" (statistics)
- Fit several (x, y) data points to a . . .
- straight linear line $y=a x+b$
- exponential curve $y=a e^{b x}$
- logarithmic curve
$y=a+b \ln x$
- power curve
$y=a x^{b}$
- "coefficient of determination" r^{2}
- closer to 1 means a good fit

The regresson coefficients a and b are found from solving the following equivalent of linear equations

While the relatioes of the varibles are defined as the following:

The coefficient of determination is:

$$
\frac{A \Sigma Y_{1}+b \Sigma X_{1} Y_{1}-\frac{1}{n}\left(\Sigma Y_{1}\right)^{2}}{\Sigma\left(Y_{1}^{2}\right)-\frac{1}{n}\left(\Sigma Y_{1}\right)^{2}}
$$

The type of curve fit must be decemmined before data inpot begins, that is, by storing the code number into register 0

Hewlett-Packard HP-29C Scientific Calculator (1979)

- "Curve Fitting" (statistics)
- Fit several (x, y) data points to a . . .
- straight linear line $y=a x+b$
- exponential curve $y=a e^{b x}$
- logarithmic curve
$y=a+b \ln x$
- power curve
$y=a x^{b}$
- "coefficient of determination" r^{2}
- closer to 1 means a good fit

Remarks:

- Negative and zero values of x, will cause a machine error for loganithnic curve fits. Negative asd reto values of y, will cause a machine efror for exponential curve fits. For poner surve fils both x_{1} and y_{i} mosit be positive, nonn-zero values.
As the differences becween x and 0 or y values becones smail, the accuracy of the regression cosffikients will decrease.

Hewlett-Packard HP-29C Scientific Calculator

- The World Book Encyclopedia has data

WORLD
BOOK

Vol. P

- Planet

PLANET. The planets are the heavenly bodies which move around the sun in nearly circular paths called orbits. The name planet was given by the ancient Greeks, and means wandere in their language. This name was given because the planets constandy change their positions in relation to the stars.
There are nine planets, and the earth is one of them. Mercury is nearest to the sun, with Venus, Earth, Mars Jupiter, Saturn, Uranus, Neptune, and Pluto following in that order.
Mercury, Venus, Mars, Jupiter, and Saturn were known to the ancient astronomers. No one knew that the earth was a planet until the early 1500's, when the great Polish astronomer, Nicolaus Copernicus, showed that the sun was the center of the solar system, and that the earth revolved around it. Before his time, astronomers had believed that the earth was the center of the universe. Uranus was diseovered by Sir William Herschel in 1781, and Neptune was located by mathe matics in 1846. The ninth planet, Pluto, was not discovered until 1930. It lies a great distance beyond Neptune
Venus, Mars, Jupiter, and Saturn can be seen easily with the naked eye. Mercury can seldom be seen with the unaided eye because it is so close to the sun that it sinks below the horizon before the sky is completely dark at night. If your eyes are keen, you can sometimes see Utanus on a clear night. A good pair of field glasses or a small telescope is needed to see Neptune.
Planets and Stars. Before the telescope was invented, the only way to tell a planet from a star was by the planet's movement and its steady shining. The stars do not seem to move and their lights twinkle rather than glow. (See Fixed Star.) With the telescope, astronomers could see that planets appeared as round discs. But the distant stars always appeared as points of light, no mat-
ter how much the telescope magnified them. Astrome omers today define a star as a body of matter in space which gives off its own light. They believe the stars are gascous, like our sun, which is a star. The planets are smaller bodies of matter which are no longer gasomins and which give off no light of their own, but mertly

flect the light of our sun.

Size and Distances from the Sun. Except for Mercury and Pluto, the farther the planets are from the sum, the farther they are from each other. The distances ane expressed in astronomical units. This unit is the averase distance of the earth from the sun, or approximatef distance of the e
The planets differ greatly from one another in size.

Plonet (1)	Av, Distance from Sun (Millions of Miles)	Period of Orbin	Dismeber (In Milet)
Mercury	36	B8 days	3,100
Venus	67.2	225 days	7,700
Earth	93	365 days	7,927
Mars	141.6	687 days	4,200
Asteroids	s 135 to 500	643 to 5,000 days	1 to 500
Jupiter	483	11.9 years	88,700
Satura	886	29.5 years	21,500
Uranus	1,782	84 years	32,000
Neptune	2,794.1	164.8 years	27,700
Pluto	3,700	248.4 yearn	3,100 to 3,600

The smallest planet is Mercury, which is about oxe sixteenth the size of the earth. Venus is almost as large as the earth, but Mars is only one seventh as large Saturn is 730 times as large as our planet. Unam is sixty-four times as large, and Neptune is sixty time as large as the earth. Jupiter is more than 1,900 times 22 large as the earth.

This does not necessarily mean that Jupiter, for ∞. ample, has 1,300 times as much matter as does the earth. The amount of matter in a body depends upon
ondume and its density, od the earth, but it has m pods on earth wouls wo 4) jutros a ditch two fee p acrose weight of 100 p Ite could at home, but 1lleation of Planels. Al unith dassified the plane he temestrial group incl fix lecause it includes E: fed mijor planets becaus mar much less than thos mesity about the same as carch, a 100 pound ma π insicad of 26.4 pounds. wher method of classifica me the earth and the sun, is The closer planets are pras space lies between the of of mall planets called lmmpared to the other bo atinents of Planets. Ever What the same time it spin tuan in its orbit is the yea acton its axis is the plane or years are shorter than sourday. coar day.

Hewlett-Packard HP-29C Scientific Calculator (1979)

- Data!

Planet	$\begin{gathered} \text { Av. Distance } \\ \text { (Mrom Sun } \\ \text { (Milions of Miles) } \end{gathered}$	$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { Orbit } \end{aligned}$	Diameter (In Miles)
Mercury	36	88 days	3,100
Venus	67.2	224.7 days	7,700
Earth	92.9	365.26 days	7,927
Mars	141.6	686.98 days	4,220
Astordids	135 to 500	643 to 5,000 day	1 to 500
Jupiter	483.4	11.86 years	88,700
Saturn	886	29.46 years	75,100
Uranus	1,782	84.01 years	32,000
Neptune	2,792	164.8 years	30,000
Pluto	3,664	247.7 years	3,600

Hewlett-Packard HP-29C Scientific Calculator

- The World Book Encyclopedia has concepts

Kepler's Three Laws of Planetary Motion

KEPLER, JOHANNES (1571-1630), a German astronomer and mathematician,

Johannes Kepler

Brown Bros.
 discovered three laws of planetary motion. His three laws later formed an indispensable part of the foundation of Sir Isaac Newton's discovery of universal gravitation (see Ellipse; Gravitation [Newton's Law of Gravitation]):
(1) Every planet follows an oval-shaped path, or orbit, around the sun, called an ellipse. The sun is located at one focus of the elliptical orbit.
(22) An imaginary line from the center of the sun to the center of a planet sweeps out the same area in a given time. This means that planets move faster when they are closer to the sun.
(3) The time taken by a planet to make one complete trip around the sun is its period. The squares of the periods of two planets are proportional to the cubes of their mean distances from the sun.
Kepler was born at Weil, Germany, and was graduated from the University of Tübingen. He accepted an offer to teach mathematics and other subjects at the Lutheran school in Graz. But he left Graz rather than undergo compulsory conversion to Roman Catholicism. While seeking another post, he formed an association with Tycho Brahe, which shaped the rest of his life (see Brahe, Tycho).
Brahe, the greatest astronomical observer before the introduction of the telescope, needed an assistant, and Kepler joined him. After Brahe died, Rudolph II, the

Kepler's Three Laws of Planetary Motion

KEPLER, JOHANNES (1571-1630), a German astronomer and mathematician,

Johannes Kepler

Brown Bros.
 discovered three laws of planetary motion. His three laws later formed an indispensable part of the foundation of Sir Isaac Newton's discovery of universal gravitation (see ElliPSE; Gravitation [Newton's Law of Gravitation]):
(1) Every planet follows an oval-shaped path, or orbit, around the sun, called an ellipse. The sun is located at one focus of the elliptical orbit.
(22) An imaginary line from the center of the sun to the center of a planet sweeps out the same area in a given time. This means that planets move faster when they are closer to the sun.
(3)) The time taken by a planet to make one complete trip around the sun is its period. The squares of the periods of two planets are proportional to the cubes of their mean distances from the sun.
Kepler was born at Weil, Germany, and was graduated from the $\mathrm{Un}^{\text {. }}$...... irepted an offer to teach ma, $2 \propto \propto^{3}$ cts at the Lutheran school is undergo compulso While seeking anc with Tycho Brahe, Brahe, Тусho).
Brahe, the great
introduction of the
stant, and

Kepler's Three Laws of Planetary Motion

KEPLER, JOHANNES (1571-1630), a German astronomer and mathematician,

Johannes Kepler

Brown Bros.
 discovered three laws of planetary motion. His three laws later formed an indispensable part of the foundation of Sir Isaac Newton's discovery of universal gravitation (see Ellipse; Gravitation [Newton's Law of Gravitation]):
(1) Every planet follows an oval-shaped path, or orbit, around the sun, called an ellipse. The sun is located at one focus of the elliptical orbit.
(22) An imaginary line from the center of the sun to the center of a planet sweeps out the same area in a given time. This means that planets move faster when thev are closer to the sun.
(3) The time taken by a planet to make one complete trip around the sun is its period. The squares of the periods of two planets are proportional to the cubes of their mean distances from the sun.
Kepler was born at Weil, Germany, and was graduated from the $\mathrm{Un}^{\text {. }}$...... irepted an offer to teach ma, $2 \propto \boldsymbol{\sim}^{3}$ cts at the Lutheran school is undergo compulso While seeking anc with Tycho Brahe, Brahe, Тусho).
Brahe, the great
introduction of the
stant, and

Kepler's Three Laws of Planetary Motion

KEPLER, JOHANNES (1571-1630), a German astronomer and mathematician,

Johannes Kepler

Brown Bros.
 discovered three laws of planetary motion. His three laws later formed an indispensable part of the fourdation of Sir Isaac Newton's discovery of universal gravitation (see ElliPSE; Gravitation [Newton's Law of Gravitation]):
(1) Every planet follows an oval-shaped path, or orbit, around the sun, called an ellipse. The sun is located at one focus of the elliptical orbit.
(2) An imaginary line from the center of the sun to the center of a planet sweeps out the same area in a given time. This means that planets move faster when they are closer to the sun.
(3) The time taken by a planet to make one compete trip around the sun is its period. The squares of the periods of two planets are proportional to the cubes of their mean distances from the sun.
Kepler was born at Weil, Germany, and was gradmated from the Un^{\prime}. offer to teach ma cts at the Lutheran school is undergo compulso: While seeking ant with Tycho Brahe,
 other than tholicism. association is life (see Brahe, Tycho)
Brahe, the great
introduction of th \square $y=a x^{1.5}$ before the stans, and

Hewlett-Packard HP-29C Scientific Calculator (1979)

Hewlett-Packard HP-29C Scientific Calculator (1979)

- Enter the Curve Fitting Program
- Enter the Data

Planet	$\begin{gathered} \text { Av. Distance } \\ \text { from Sun } \\ \text { (Millions of Miles) } \end{gathered}$	$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { Orbit } \end{aligned}$	Diameter (In Miless)
Mercury	36	88 days	3,100
Venus	67.2	224.7 days	7,700
Earth	92.9	365.26 days	7,927
Mars	141.6	686.98 days	4,220
Asteratas	135 to 500	643 to 5,000 days	1 to 500
Jupiter	483.4	11.86 years	88,700
Saturn	886	29.46 years	75,100
Uranus	1,782	84.01 years	32,000
Neptune	2,792	164.8 years	30,000
Pluto	3,664	247.7 years	3,600

Hewlett-Packard HP-41C Scientific Calculator (1980)

HP introduces new, versatile calculator
 developpent department was devoted to
 at extra cost, a number of options:
 devices through four electronic, built-in
 While the rechargeable batteries in

By Mike McCraken

 Of The Gazette-TimesThe Corvalils division of HewlettPackard Co . Introduced todry the most versatile and advanced hand-held calculator it has ever manufactured.
"It's probably the most significant product we've. introduced in some product we've. Introduced in some
time," Glenn Theodore, product panager, said of the new HP-ic.
The HP-41C, which retails for \$235, features a number of revolutionary features that make it a powerful personal computing device uselal to the technician, businesarman or student, Theodore said.
After more than two years in the After more thanes, the HP-4IC joins tevelopment stages, the Holuls the divlsion produces in Corvallis.
The new calculator was designed at the Corvallis division, and Theodore said manh of the dividion't researeh and

About 90 percent of the calculator's parts will be produced locally, Theodore suld
He sald the company hopes to obtain a "signifieant" revenue growth through sale of the new product, although HP does not publicise many sales figures becamse of the highly competitive nature of the calculator business
The company
The company employs 1,250 employees at its Corvallis division and has a monthly payroll of $\$ 1.8$ million. Theodore sald production of the new calculator will not require the hiring of large numbers of new employees, and said employment at the flrm thould continue to grow at about 10 percent per tinue
year.

The

The new calculator is called "alphanumeric" because it "communicales" with the user in both numeric and alphabetic characters.
Usern of the enleniater enn purchane.

- Up to four memory "modules" can be plugged inte the back of the calculator to effectively quintuple its memory capacity.
- A plugin card reader allows the user to enter programs from recorded tiagnetic cards or to recond programs en blank cards:
- A portable thermal, or inkless, printer provides hard copy recoinds of calculations, high resolution plots, and complete alphabetic and numeric output.
- An optical wand (to be avallable in 1850) will emable the user to rapidly read and enter programs or data from printed bar codes.
-Sixteen plag-in application modules. effering a variety of additional business and science programs, can be used in additton to the calculator's existing programs.
The HPMIC can be connected to these
sockets.
Among its major features, in addition to its ability to "grow" through the use of additional programs, is the calculator's "continuous memory," Theodore said.
Thls allows information to be retained in the caleutator's memory systems after power has been turned elf, compared to other calculators which lose memory information when-the power is eut.
The calculator, which contalns 130 pre-programmed scientific amd mathematical functions, also features a liquid erstal display, rather than lightemitting diodes, as used in previous Hewleti-Packard models.
The liquid crystals use far less energy than the diodes, and enable cumpany engineers to build the calculator so that it uses throw-away alkaline batteries father that rechargeable niekle cadmium batteries.
other calculators have a life of up to six hours before they need to be recharged, the alkaline batteries will last nine months to a year and are more economical, Theodore said.
"The HP-41C is 100 percent faster than earlier HP models, contains up to four times the memory capacity with available options, and has 40 percent more standard functions," President Richard Moore sald of the new calculator.
Major markets for the products from the Corvallis division include the United States. Japan and much of Europe, as well as several Latin American coantries.
"Introduction of the HP-41C clearly establishes our leadership in the productlot of hand-held ealeculatorn for professtional use," Theodore sald.
"tt Is clearly unmatched by any of our competitors."

Hewlett-Packard HP-41C Scientific Calculator (1980)

- Many more functions
- Alphabetic keys let you enter functions that are not on the keyboard
- Get good at typing the more common functions
- [XEQ] [Alpha] P R O M P T [Alpha]
usia
PRGBM
ALPHA

		$x+$	10 x	e^{x}
	$\sqrt{1 / x}$	$\sqrt{\sqrt{x}}$	LOG	LN
	B	c	\bigcirc	E
CL. 2	8	SIN ${ }^{-1}$	$\cos ^{-1}$	TAN-1
$x>y$	$\overline{\mathrm{R} \dagger}$	SIN	cos	TAN
	G	1 H	11	10
	ASN	LAL-	GTO	BST
	$\overline{\mathrm{XEO}}$	$\overline{\text { STO }}$	$\underset{\mathrm{m}}{\mathrm{RCL}}$	SST
CATALOG		ISG	RTN	CL. X / A
$\underset{N}{\text { ENTER }}$		$\overline{\mathrm{CHS}}$	EEX	+
$x=y ?$	SF		F	FS?
$\bar{\square}$	7 R		8	9
$x \leqslant y$?	BEEP		$\bigcirc \mathrm{R}$	$\mathrm{R}+\mathrm{P}$
$\frac{+}{4}$	4		5	${ }^{6}$
$x>y$?	Fix		Cl	ENG
$\frac{\mathrm{x}}{\underset{\gamma}{ }}$	1 z		2	13
$x=0 ?$	π		H \times	VIEW
-	O		-	\|R/S

Hewlett-Packard HP-41C Scientific Calculator (1980)

- Many more functions
- Alphabetic keys let you enter functions that are not on the keyboard
- Get good at typing the more common functions
- [XEQ] [Alpha] P R O M P T [Alpha]
usia
PRGBM
ALPHA

		x^{2}	10 x	e^{x}
	$\sqrt{1 / x}$	$\sqrt{\sqrt{x}}$	LOG	LN
	B	c	\bigcirc	E
CL. 2	8	SIN ${ }^{-1}$	$\cos ^{-1}$	TAN-1
$x \geq y$	$\overline{\mathrm{R} \dagger}$	SIN	cos	TAN
	G	1 H	11	1.
	ASN	LAL-	GTO	BST
	$\overline{\text { XEO }}$	$\overline{\text { STO }}$	$\overline{\mathrm{RCL}}$ M	SST
CATALOG		15G	RTN	cl x / A
ENTER 4 N		$\overline{\mathrm{CHS}}$	EEX	$+$
$x=y$? SE CF E?				
-	${ }_{R}^{7}$		8	9
$x \leqslant y$?	BEEP		- R	$\mathrm{R}+\mathrm{P}$
$\frac{+}{4}$	4			${ }^{6}$
$x>y ?$	Fix		Cl	ENG
$\frac{\mathrm{x}}{\substack{\text { x }}}$	1 z		2	13
$x=0 ?$	π		H \times	VIEW
-	O		-	\|R/S

Hewlett-Packard HP-41C Scientific Calculator (1980)

- But even better . . .

Hewlett-Packard HP-41C Scientific Calculator (1980)

- Exposed to more concepts that normally I would not have been exposed to

Hewlett-Packard HP-41C Scientific Calculator (1980)

- "Time Value of Money"

FINANCIAL CALCULATIONS

This program converts your HP -41C into a powerful financial calculator. It has the ability to solve for any of the unknowns relating to a cash flow situation as shown below.

PV = Present Value: the amount loaned, borrowed, invested, etc. $\mathrm{I}_{\mathrm{N}}=$ Periodic Interest rate
PMT $=$ Payment amount: the amount paid on a loan or earned on an investment.
FV = Future Value: the amount remaining, accumulated, saved, etc.
The sketch above shows a standard loan amortization cash flow from the borrower's point of view. From the lender's point of view, PV would be shown borrower's point of view. From the lender's point of view, PV would be shown
negative and the PMT stream would be positive. By changing the signs of PV, negative and the PMT stream would be positive. By changing diferent cash flow situtations may be realized. Cash flow diagrams for the four basic compound interest problems are presented below along with some of the more common terminology.

HewlettPackard

 HP-41C Scientific Calculator
Schematic!

Hewlett-Packard HP-41C Scientific Calculator (1980)

- Hack the Calculator
- Add a button (magnetic reed switch) where a pushbutton really should have been.
- Firmware was robust!
- I could assign a program to the "phantom" key!

Hewlett-Packard HP-16C Programmer's Calculator (1983)

New calculators to go on sale July 1
 dile complex numbers and a grid of numbers that can be

by Bill Thompuen of the Gavetie-Times

Two new calculators developed and built by engineers at the Corvallis Division of Hewlett-Packard C. this year will go on sale worldwide July 1.
"The HP-1SC and HP-16C slim-line programmable calculators were introduced this week at the Consumer Electronics Show in Chicago," said Tom Darnall, an HP product spokesman in Corvallis.
"The HP-ISC, which sells for \$15s, is the company's most powerfut calculator. It includes an unprecedented number of math, science and engineering functions and will be able to han-
manipulated.

The HP-IEC, which sells for \$15e, is the first programmable calculator for computer scientists - a highly specialized product aimed at a narrow band of prolessionala."
Darnall said work on both calculators had been going on for several years and that the Corvallis division will beild eight main products, in addition to numerous accessories
They are the HP-11, 12,15 and 16 calculators, the HP-41 handheld computer and the HP- -0, , 85 and 87 personal computers.
"Unlike the HP-15 calculator, I don't think the average person could make much sense of the HP-ILC, which is designed for people whe work with computer language," Darnall said.
"The HP-16C marks the company's entry into highly specialized calculators, and is seen as one way to retain HP's competitive edge over the Japanese.
"The Japanese have not taken an interest in specialized products up to now, while we have always been one step ahead of them. The company plans to continue to stay ahead, and this gives us an edpe on the market."
Eric Evett, software project manager at "the HewlettPackard's Palo Alto. Calif., headquarters, said the HP-15C would be invaluable for solving systems of linear equations.
"A seven-equation system could take hours to solve with a pencil. paper and conventional calculator," he said, "but it pakes only 28 seconds on the HP-15C."

$$
\text { FFFFFFFF } h
$$

Osborne Executive 8-bit "Luggable" Computer (1983)

- The computer that killed the company
- Less expensive during Chapter 11 bankruptcy protection
- Used to write programs for Berkeley classes

Toshiba T1000SE "Laptop" Computer (1990)

- First personal "laptop" computer
- Best screen!
- Battery-backed SRAM disk for storage

Toshiba T1000SE "Laptop" Computer (1990)

- Battery eventually wore out
- Replaced with RC Car battery taped to the outside

- Didn't look too much like Dynamite!

Hewlett-Packard HP-200LX "Palmtop" Computer (1994)

- Computers are getting smaller!
- Last MS-DOS computer that I bought
- At work, engineers didn't have laptops, but I had a "palmtop"!
- Having a spreadsheet in meetings is valuable.
- Also had a symbolic-math program.

New Purchases: Financial (HP-22, HP-12C) and Retro (HP-35S) Calculators

HP 35 s
Scientific Calculator

Accessibility Engineering for Color Blindness: Hewlett-Packard HP-29C, HP12C, HP35S

HP 35 s
Scientific Calculator

0000006006 3141502654

Accessibility Engineering for Color Blindness: Hewlett-Packard HP-29C, HP12C, HP35S

Hewlett-Packard commonly used gold/blue alternate-function keys

Accessibility Engineering for Color Blindness: Hewlett-Packard HP-29C, HP12C, HP35S

Simulating the Color Confusion of Red/Green Color Blindness

Different Colors as seen by person with Normal Color Vision

Color Confusion as seen by person with Deuteranopia

Accessibility Engineering for Color Blindness: Hewlett-Packard HP-29C, HP12C, HP35S

Calculators and the Future

- Students use specialized web-site based "calculators"
- Only use physical calculators during paper tests
- Highly capable calculators remain only a curiosity

Apparently "Vintage" HOW MREans
 "What I Once Used"

- Part 1: How Vintage Computing Devices Benefitted Me
- Part 2: The Amazing Curta!
- Part 3: Show and Tell

Kerry Veenstra, K3RRY

Part 2: The Amazing Curta!

- Designed by Curt Herzstark
- Parents had an adding-machine company in Vienna
- Herzstark was learning everything needed to take over the business
- WWII!
- Herzstark already was working on the Curta design
- SS kept him alive to finish the work and present the calculator to Hitler
- "He might make you an honorary Aryan!"

Part 2: The Amazing Curta!

- War Ended
- Franz Joseph II, Prince of Liechtenstein, provided funding for a factory

Part 2: The Amazing Curta!

- My Curta (no. 12440) was made in 1950

CURTA - RECHENMASCHINE

Modell I u. II

Baujahr mit laufender Nr.

Jahr No.

1947
1948
1949
1950
1951
1952
1953
3

Demo

- Addition
- Subtraction!
- Multiplication!!
- Division !!!
- Square Roots !!!!

Addition

1. Enter a number using side slides
2. Sum into the total on top by turning the crank clockwise once (turn only clockwise)

Subtraction

1. Same as Addition
2. But lift the crank to enter subtraction mode
3. Lower crank to return to addition mode

Multiplication by 1 Digit n

1. To compute $x \times n$ add $x+x+x+x+\ldots+x, n$ times

- Turn the crank n times

$$
\begin{array}{r}
123 \\
\times \quad 3 \\
\hline 369
\end{array}
$$

Multiplication by n Digits

1. Add and Shift

8765
$\times \quad 1111$
8765
8765
8765
8765
9737915

Division

1. Subtract and Shift
2. Use special "reverse" switch to count the number of subtractions positively

Square Root of x (5 significant digits)

1. Enter x

2. Add nearest value from column 1 of table
3. Multiply by value in column 2

- This method was used with traditional multiplying adding machines.

Apparently "Vintage" HOW MREans
 "What I Once Used"

- Part 1: How Vintage Computing Devices Benefitted Me
- Part 2: The Amazing Curta!
- Part 3: Show and Tell

